- home
- Search
- Energy Research
- 2021-2025
- GB
- CA
- Polytechnic University of Milan
- Energy Research
- 2021-2025
- GB
- CA
- Polytechnic University of Milan
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Lixun Chi;Huai Su;
Li Zhang;
Jing Zhou; Enrico Zio; Enrico Zio;Li Zhang
Li Zhang in OpenAIREZhaoming Yang;
Meysam Qadrdan; Jinjun Zhang; Xueyi Li;Zhaoming Yang
Zhaoming Yang in OpenAIRELin Fan;
Abstract Reliability analysis of IESs (Integrated Energy System) is complicated because of the complexity of system topology and dynamics and different kinds of uncertainties. Reliability is often calculated based on statistic methods, which always focus on historical performances and neglect the importance of their dynamics and structure. To overcome this problem, in this paper, a systematic framework for dynamically analysing the real-time reliability of IESs is proposed by integrating different machine learning methods and statistics. Firstly, the bootstrap-based Extreme Learning Machine is developed to forecast the conditional probability distributions of the productions of renewable energies and the energy consumptions. Then, the dynamic behaviour of IESs is simulated based on a stacked auto-encoder model, instead of using traditional mechanism-based simulation models, for improving computational efficiency. Besides, the variables representing the transient properties of natural gas pipeline networks, such as delivery pressures and flow rates, are taken as the indicators for quantifying the energy supply security in natural gas pipeline networks. The time-dependent relationships among these indicators and their statistic correlations are modelled for improving the effectiveness of the analysis results. Finally, the reliability assessment is performed by estimating the probability distribution of each functional state of the target IES. A case study of a realistic bi-directional IES is carried out to demonstrate the effectiveness of the proposed method. The results show that the method is able to effectively evaluate the reliability of IESs, which can provide useful information for system operation and management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Authors:Ubaid Ahmed;
Ubaid Ahmed
Ubaid Ahmed in OpenAIREAnzar Mahmood;
Anzar Mahmood
Anzar Mahmood in OpenAIREMajid Ali Tunio;
Majid Ali Tunio
Majid Ali Tunio in OpenAIREGhulam Hafeez;
+2 AuthorsGhulam Hafeez
Ghulam Hafeez in OpenAIREUbaid Ahmed;
Ubaid Ahmed
Ubaid Ahmed in OpenAIREAnzar Mahmood;
Anzar Mahmood
Anzar Mahmood in OpenAIREMajid Ali Tunio;
Majid Ali Tunio
Majid Ali Tunio in OpenAIREGhulam Hafeez;
Ghulam Hafeez
Ghulam Hafeez in OpenAIREAhsan Raza Khan;
Ahsan Raza Khan
Ahsan Raza Khan in OpenAIRESohail Razzaq;
Sohail Razzaq
Sohail Razzaq in OpenAIRELa prévision précise de l'irradiance solaire (SI) est un aspect important de la collecte de l'énergie solaire et dépend de diverses caractéristiques météorologiques. De nombreux algorithmes de sélection de caractéristiques ont été mis en œuvre pour la sélection de paramètres météorologiques appropriés. Cependant, les algorithmes de stimulation ne sont pas largement explorés pour les applications de sélection de fonctionnalités. Par conséquent, dans cette étude, une nouvelle perspective est introduite en explorant l'efficacité des algorithmes d'amplification dans les applications de sélection de fonctionnalités. Dans l'étude proposée, nous effectuons une analyse comparative de différents algorithmes de boosting pour les applications de sélection de fonctionnalités, notamment Extreme Gradient Boosting (XgBoost), Categorical Boosting (CatBoost), Random Forest (RF) et Light Gradient Boosting Machine (LGBM). La nouveauté de cette approche réside dans l'utilisation de ces techniques d'amplification pour la sélection des caractéristiques les plus appropriées qui améliorent la performance prédictive du modèle. Les données SI de trois emplacements géographiques différents : Islamabad, Pakistan, Bâle, Suisse et Golden, Colorado, États-Unis sont obtenues à partir de la base de données nationale sur le rayonnement solaire (NSRDB) et utilisées dans l'étude proposée. Tout d'abord, les fonctionnalités appropriées sont sélectionnées séparément par quatre algorithmes d'amplification. Les caractéristiques sélectionnées sont ensuite transmises au réseau de mémoire bidirectionnelle à long terme et à court terme (BiLSTM) pour la prévision de l'irradiance horizontale globale (GHI) à une heure d'avance. L'erreur quadratique moyenne (RMSE), l'erreur quadratique moyenne (MSE), l'erreur absolue moyenne (MAE), l'erreur d'échelle absolue moyenne (MASE) et l'erreur quadratique moyenne normalisée (NRMSE) sont utilisées comme indicateurs de performance. Les résultats démontrent que le réseau BiLSTM formé sur des fonctionnalités sélectionnées, proposé par le modèle XgBoost, produit de meilleurs résultats de prévision. Dans le cas de l'ensemble de données de la ville d'Islamabad, le RMSE et le MAE de BiLSTM formés avec des fonctionnalités appropriées, par rapport au modèle conventionnel, sont améliorés de 29,92 % et 14,03 %, respectivement. Pour l'ensemble de données de Bâle, le RMSE et le MAE du réseau BiLSTM se sont améliorés de 14,43 % et 28,72 %, respectivement. De plus, pour l'ensemble de données de Golden City, le RMSE et le MAE de l'approche proposée sont améliorés de 10,5% et 17,38%, respectivement, par rapport au modèle conventionnel. El pronóstico preciso de la irradiancia solar (IS) es un aspecto importante de la recolección de energía solar y depende de varias características meteorológicas. Se han implementado numerosos algoritmos de selección de características para la selección de parámetros meteorológicos adecuados. Sin embargo, los algoritmos de refuerzo no se exploran ampliamente para las aplicaciones de selección de características. Por lo tanto, en este estudio, se introduce una perspectiva novedosa al explorar la eficacia de los algoritmos de impulso en las aplicaciones de selección de características. En el estudio propuesto, realizamos un análisis comparativo de diferentes algoritmos de refuerzo para aplicaciones de selección de características, incluyendo Extreme Gradient Boosting (XgBoost), Categorical Boosting (CatBoost), Random Forest (RF) y Light Gradient Boosting Machine (LGBM). La novedad de este enfoque está en la utilización de estas técnicas de potenciación para la selección de las características más adecuadas que mejoren el rendimiento predictivo del modelo. Los datos del SI de tres ubicaciones geográficas diferentes: Islamabad, Pakistán, Basilea, Suiza y Golden, Colorado, EE. UU., se obtienen de la Base de Datos Nacional de Radiación Solar (NSRDB) y se utilizan en el estudio propuesto. En primer lugar, las características apropiadas son seleccionadas por cuatro algoritmos de refuerzo por separado. Las funciones seleccionadas se alimentan a la red de memoria bidireccional a largo y corto plazo (BiLSTM) para pronosticar la irradiancia horizontal global (GHI) con una hora de antelación. El error cuadrático medio (RMSE), el error cuadrático medio (MSE), el error absoluto medio (MAE), el error escalado absoluto medio (MASE) y el error cuadrático medio normalizado (NRMSE) se utilizan como indicadores de rendimiento. Los hallazgos demuestran que la red BiLSTM capacitada en características seleccionadas, propuesta por el modelo XgBoost, produce mejores resultados de pronóstico. En el caso del conjunto de datos de la ciudad de Islamabad, el RMSE y el MAE de BiLSTM entrenados con las características adecuadas, en comparación con el modelo convencional, mejoran en un 29,92% y un 14,03%, respectivamente. Para el conjunto de datos de Basilea, el RMSE y el MAE de la red BiLSTM mejoraron en un 14,43% y un 28,72%, respectivamente. Además, para el conjunto de datos de Golden City, el RMSE y el MAE del enfoque propuesto mejoran en un 10,5% y un 17,38%, respectivamente, que el modelo convencional. Accurate Solar Irradiance (SI) forecasting is an important aspect of solar energy harvesting and it depends on various meteorological features. Numerous feature selection algorithms have been implemented for the selection of suitable meteorological parameters. However, boosting algorithms are not explored widely for feature selection applications. Therefore, in this study, a novel perspective is introduced by exploring the efficacy of boosting algorithms in feature selection applications. In the proposed study, we perform a comparative analysis of different boosting algorithms for feature selection applications including Extreme Gradient Boosting (XgBoost), Categorical Boosting (CatBoost), Random Forest (RF) and Light Gradient Boosting Machine (LGBM). The novelty of this approach is in utilizing these boosting techniques for the selection of the most appropriate features that improve the predictive performance of the model. The SI data of three different geographical locations: Islamabad, Pakistan, Basel, Switzerland and Golden, Colorado, USA are attained from the National Solar Radiation Database (NSRDB) and used in the proposed study. First, the appropriate features are selected by four boosting algorithms separately. The selected features are then fed to the Bidirectional Long-Short-Term Memory (BiLSTM) network for forecasting hour-ahead Global Horizontal Irradiance (GHI). The Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE) and Normalized Root Mean Square Error (NRMSE) are used as performance indicators. Findings demonstrate that the BiLSTM network trained on selected features, proposed by the XgBoost model, produces better forecasting results. In the case of the Islamabad city dataset, the RMSE and MAE of BiLSTM trained with appropriate features, as compared to the conventional model, are improved by 29.92% and 14.03%, respectively. For the dataset of Basel, the RMSE and MAE of BiLSTM network improved by 14.43% and 28.72%, respectively. Moreover, for the Golden city dataset, the RMSE and MAE of the proposed approach are improved by 10.5% and 17.38%, respectively than the conventional model. يعد التنبؤ الدقيق بالإشعاع الشمسي (SI) جانبًا مهمًا من حصاد الطاقة الشمسية ويعتمد على ميزات الأرصاد الجوية المختلفة. تم تنفيذ العديد من خوارزميات اختيار الميزات لاختيار معلمات الأرصاد الجوية المناسبة. ومع ذلك، لا يتم استكشاف خوارزميات التعزيز على نطاق واسع لتطبيقات اختيار الميزات. لذلك، في هذه الدراسة، يتم تقديم منظور جديد من خلال استكشاف فعالية تعزيز الخوارزميات في تطبيقات اختيار الميزات. في الدراسة المقترحة، نقوم بإجراء تحليل مقارن لخوارزميات التعزيز المختلفة لتطبيقات اختيار الميزات بما في ذلك تعزيز التدرج الشديد (XgBoost)، التعزيز الفئوي (CatBoost)، الغابات العشوائية (RF) وآلة تعزيز التدرج الخفيف (LGBM). تكمن حداثة هذا النهج في استخدام تقنيات التعزيز هذه لاختيار الميزات الأكثر ملاءمة التي تحسن الأداء التنبؤي للنموذج. يتم الحصول على بيانات SI لثلاثة مواقع جغرافية مختلفة: إسلام أباد، باكستان، بازل، سويسرا وغولدن، كولورادو، الولايات المتحدة الأمريكية من قاعدة البيانات الوطنية للإشعاع الشمسي (NSRDB) واستخدامها في الدراسة المقترحة. أولاً، يتم اختيار الميزات المناسبة من خلال أربع خوارزميات معززة بشكل منفصل. ثم يتم تغذية الميزات المحددة إلى شبكة الذاكرة طويلة الأجل ثنائية الاتجاه (BiLSTM) للتنبؤ بالإشعاع الأفقي العالمي قبل ساعة (GHI). يتم استخدام الخطأ التربيعي لمتوسط الجذر (RMSE)، والخطأ التربيعي لمتوسط الجذر (MSE)، والخطأ المطلق لمتوسط الجذر (MAE)، والخطأ المطلق لمتوسط الجذر التربيعي لمتوسط الجذر (MASE)، والخطأ التربيعي لمتوسط الجذر التربيعي لمتوسط الجذر (NRMSE) كمؤشرات أداء. تُظهر النتائج أن شبكة BiLSTM المدربة على ميزات مختارة، والتي اقترحها نموذج XgBoost، تنتج نتائج تنبؤ أفضل. في حالة مجموعة بيانات مدينة إسلام أباد، تم تحسين RMSE و MAE من BiLSTM المدربين بميزات مناسبة، مقارنة بالنموذج التقليدي، بنسبة 29.92 ٪ و 14.03 ٪ على التوالي. بالنسبة لمجموعة بيانات بازل، تحسنت RMSE و MAE لشبكة BiLSTM بنسبة 14.43 ٪ و 28.72 ٪ على التوالي. علاوة على ذلك، بالنسبة لمجموعة بيانات المدينة الذهبية، تم تحسين RMSE و MAE للنهج المقترح بنسبة 10.5 ٪ و 17.38 ٪ على التوالي من النموذج التقليدي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.03.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.03.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Authors:Rita Yi Man Li;
Yi Lut Li;Rita Yi Man Li
Rita Yi Man Li in OpenAIREM. James C. Crabbe;
M. James C. Crabbe
M. James C. Crabbe in OpenAIREOtilia Manta;
+1 AuthorsOtilia Manta
Otilia Manta in OpenAIRERita Yi Man Li;
Yi Lut Li;Rita Yi Man Li
Rita Yi Man Li in OpenAIREM. James C. Crabbe;
M. James C. Crabbe
M. James C. Crabbe in OpenAIREOtilia Manta;
Otilia Manta
Otilia Manta in OpenAIREMuhammad Shoaib;
Muhammad Shoaib
Muhammad Shoaib in OpenAIREdoi: 10.3390/su13115882
handle: 10547/624990
We argue that environmental legislation and regulation of more developed countries reflects significantly their moral values, but in less developed countries it differs significantly from their moral values. We examined this topic by using the keywords “sustainability” and “sustainable development”, studying web pages and articles published between 1974 to 2018 in Web of Science, Scopus and Google. Australia, Zimbabwe, and Uganda were ranked as the top three countries in the number of Google searches for sustainability. The top five cities that appeared in sustainability searches through Google are all from Africa. In terms of academic publications, China, India, and Brazil record among the largest numbers of sustainability and sustainable development articles in Scopus. Six out of the ten top productive institutions publishing sustainable development articles indexed in Scopus were located in developing countries, indicating that developing countries are well aware of the issues surrounding sustainable development. Our results show that when environmental law reflects moral values for betterment, legal adoption is more likely to be successful, which usually happens in well-developed regions. In less-developed states, environmental law differs significantly from moral values, such that changes in moral values are necessary for successful legal implementation. Our study has important implications for the development of policies and cultures, together with the enforcement of environmental laws and regulations in all countries.
University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/11/5882Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/11/5882Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Argentina, Germany, France, Argentina, Czech Republic, Czech RepublicPublisher:Springer Science and Business Media LLC Funded by:ANR | SUPER, NSF | Pierre Auger ProjectANR| SUPER ,NSF| Pierre Auger ProjectG. Medina-Tanco; J. Stasielak; G. Farrar; Trent D. Grubb; Sullivan Marafico;F. C. T. Barbato;
Rodrigo Guedes Lang;F. C. T. Barbato
F. C. T. Barbato in OpenAIREP. Abreu;
Kai Daumiller; Adriana Vásquez-Ramírez; E.E. Pereira Martins; E.E. Pereira Martins; S. Querchfeld; Andres Travaini; Juan Manuel González; V. Scherini; François Montanet; Jonathan Blazek; Eleonora Guido; Marcel Köpke; J. de Oliveira; D. Lo Presti;P. Abreu
P. Abreu in OpenAIREA. M. Botti;
Juan Miguel Carceller; O. Martínez Bravo; Jacco Vink; L. Perrone; M. Risse; A. Parra;A. M. Botti
A. M. Botti in OpenAIREA. Saftoiu;
A. Machado Payeras;A. Saftoiu
A. Saftoiu in OpenAIREH. Wilczyński;
Gualberto Avila;H. Wilczyński
H. Wilczyński in OpenAIREJ. R. T. de Mello Neto;
A.L. Garcia Vegas; I. Allekotte; B. Tome; Marc Weber; Kathrin Bismark; Kathrin Bismark; A. Di Matteo;J. R. T. de Mello Neto
J. R. T. de Mello Neto in OpenAIRELorenzo Cazon;
C. Pérez Bertolli; C. Pérez Bertolli; Alina Nasr-Esfahani; Paolo Privitera; Miguel Mostafa; M. E. Bertaina; W. M. Namasaka;Lorenzo Cazon
Lorenzo Cazon in OpenAIREFabio Convenga;
C. J.W.P. Timmermans; Fabian Gobbi; Fernando Contreras; L. Valore; A. Streich; A. Streich; Giovanni Consolati; Karen S. Caballero-Mora; Q. Luce;Fabio Convenga
Fabio Convenga in OpenAIRERaul Sarmento;
Raul Sarmento
Raul Sarmento in OpenAIREM. Schimassek;
M. Schimassek; Esteban Roulet; A. Haungs; J. Pȩkala;M. Schimassek
M. Schimassek in OpenAIREMartin Vacula;
Virginia Binet; Vladimir Lenok; Niklas Langner; Carlos Escobar;Martin Vacula
Martin Vacula in OpenAIREAntonella Castellina;
M. R. Hampel;Antonella Castellina
Antonella Castellina in OpenAIRENataliia Borodai;
A. A. Nucita; N. Kunka; Marco Aglietta; M. Zavrtanik; A.C. Cobos Cerutti; J. Rautenberg; R. López; Clara Keiko Oliveira Watanabe; R. Squartini; Josina Schulte; J. Vicha; M. del Río; Florian Lukas Briechle;Nataliia Borodai
Nataliia Borodai in OpenAIREMaximilian Stadelmaier;
Maximilian Stadelmaier; G. De Mauro; J. Kleinfeller; M. Platino; John Matthews; M. Wirtz; S. Petrera; Giovanni Mancarella; Jon Paul Lundquist; Humberto Ibarguen Salazar; Octavian Sima; L. Nožka;Maximilian Stadelmaier
Maximilian Stadelmaier in OpenAIRERossella Caruso;
G. C. Hill; Carla Taricco; Kevin-Druis Merenda; Juan Pablo Gongora;Rossella Caruso
Rossella Caruso in OpenAIREAntonio Condorelli;
Pierre Billoir; Philipp Papenbreer; Lino Miramonti; G. Golup; Carlo Ventura;Antonio Condorelli
Antonio Condorelli in OpenAIREG. Parente;
Denis Stanca;G. Parente
G. Parente in OpenAIREFelix Schlüter;
Felix Schlüter; Peter Buchholz; B. Andrada;Felix Schlüter
Felix Schlüter in OpenAIRER. Alves Batista;
Toshihiro Fujii; Toshihiro Fujii; H. Martinez; A. Insolia; G. Cataldi; Alan Coleman; Corinne Berat; Cristina Galea;R. Alves Batista
R. Alves Batista in OpenAIREAlina Mihaela Badescu;
G. P. Guedes;Alina Mihaela Badescu
Alina Mihaela Badescu in OpenAIREL. Lu;
Orazio Zapparrata;
B. Wundheiler; A. Filipčič; Peter L. Biermann; A. Weindl; Maria-Teresa Dova; Marcus Niechciol;Orazio Zapparrata
Orazio Zapparrata in OpenAIREE. De Vito;
Jan Ebr; Jonathan Biteau; Isabel Goos; Isabel Goos;E. De Vito
E. De Vito in OpenAIREJonas Glombitza;
Fridtjof Feldbusch; D. D. dos Santos;Jonas Glombitza
Jonas Glombitza in OpenAIREJeffrey Brack;
V. de Souza;Jeffrey Brack
Jeffrey Brack in OpenAIRERadomir Smida;
H.O. Klages; Jörg R. Hörandel; Ladislav Chytka;Radomir Smida
Radomir Smida in OpenAIREA. C. Fauth;
M. I. Micheletti;A. C. Fauth
A. C. Fauth in OpenAIREIoana Caracas;
Julien Manshanden; L. Zehrer; W. Rodrigues de Carvalho;Ioana Caracas
Ioana Caracas in OpenAIREVincenzo Rizi;
Martina Bohacova; Zoé Torrès; Thomas Hebbeker;Vincenzo Rizi
Vincenzo Rizi in OpenAIREFrank G. Schröder;
Frank G. Schröder; Petr Hamal;Frank G. Schröder
Frank G. Schröder in OpenAIREAlena Bakalova;
Günter Sigl; Lukáš Vaclavek; J. Ridky; F. Riehn;Alena Bakalova
Alena Bakalova in OpenAIRETomáš Fodran;
Tomáš Fodran
Tomáš Fodran in OpenAIREK. Mulrey;
Miroslav Pech; Juan Carlos D'Olivo; D. Ravignani; E. Varela; Markus Roth; M. A. Leigui de Oliveira; Claudio Galelli; Antonio Bueno; Marco Giammarchi; M. Palatka; R. Sato; Roberto Mussa; Olivier Deligny; C. Hojvat; Fabrizia Canfora; Sara Martinelli; Sara Martinelli; L. M. Domingues Mendes; David Wittkowski; P.R. Araújo Ferreira;K. Mulrey
K. Mulrey in OpenAIREMax Büsken;
Max Büsken; Thomas Bretz; S. J. De Jong;Max Büsken
Max Büsken in OpenAIREM. Unger;
Carla Aramo; M. Kleifges; Daniela Mockler; Daniela Mockler; Marcos Cerda; Serguei Vorobiov;M. Unger
M. Unger in OpenAIREdoi: 10.1140/epjc/s10052-021-09700-w , 10.48550/arxiv.2109.13400 , 10.18154/rwth-2021-12100 , 10.18154/rwth-2022-00047
arXiv: 2109.13400
handle: 2133/23683
doi: 10.1140/epjc/s10052-021-09700-w , 10.48550/arxiv.2109.13400 , 10.18154/rwth-2021-12100 , 10.18154/rwth-2022-00047
arXiv: 2109.13400
handle: 2133/23683
AbstractWe present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.
RepHipUNR - Reposito... arrow_drop_down RepHipUNR - Repositorio Hipermedial de la Universidad Nacional de RosarioArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesMémoires en Sciences de l'Information et de la CommunicationPreprint . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-021-09700-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert RepHipUNR - Reposito... arrow_drop_down RepHipUNR - Repositorio Hipermedial de la Universidad Nacional de RosarioArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesMémoires en Sciences de l'Information et de la CommunicationPreprint . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-021-09700-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Giorgio Besagni;
Giorgio Besagni
Giorgio Besagni in OpenAIREAmjad Anvari-Moghaddam;
Amjad Anvari-Moghaddam
Amjad Anvari-Moghaddam in OpenAIREChristos N. Markides;
Christos N. Markides
Christos N. Markides in OpenAIREApplied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREAuthors:A. Bianchini;
A. Bianchini;A. Bianchini
A. Bianchini in OpenAIREG. Bangga;
G. Bangga; +20 AuthorsG. Bangga
G. Bangga in OpenAIREA. Bianchini;
A. Bianchini;A. Bianchini
A. Bianchini in OpenAIREG. Bangga;
G. Bangga; I. Baring-Gould;G. Bangga
G. Bangga in OpenAIREA. Croce;
A. Croce;A. Croce
A. Croce in OpenAIREJ. I. Cruz;
R. Damiani; G. Erfort; G. Erfort;J. I. Cruz
J. I. Cruz in OpenAIREC. Simao Ferreira;
C. Simao Ferreira; D. Infield; C. N. Nayeri; C. N. Nayeri; G. Pechlivanoglou;C. Simao Ferreira
C. Simao Ferreira in OpenAIREM. Runacres;
M. Runacres; G. Schepers; G. Schepers; B. Summerville; D. Wood; A. Orrell;M. Runacres
M. Runacres in OpenAIREAbstract. While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement of their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programmes are developing worldwide. With this background, the scope of the present study is twofold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e.: (1) improve energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predict long-term turbine performance with limited resource measurements and prove reliability; (3) improve the economic viability of small wind energy; (4) facilitate the contribution of SWTs to the energy demand and electrical system integration; (5) foster engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested within which ten key enabling actions are finally proposed.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 6 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | eCharge4DriversEC| eCharge4DriversAuthors: Tommaso Schettini;Mauro Dell'Amico;
Francesca Fumero; Ola Jabali; +1 AuthorsMauro Dell'Amico
Mauro Dell'Amico in OpenAIRETommaso Schettini;Mauro Dell'Amico;
Francesca Fumero; Ola Jabali;Mauro Dell'Amico
Mauro Dell'Amico in OpenAIREFederico Malucelli;
Federico Malucelli
Federico Malucelli in OpenAIREdoi: 10.3390/en16104186
In order to foster electric vehicle (EV) adoption rates, the availability of a pervasive and efficient charging network is a crucial requirement. In this paper, we provide a decision support tool for helping policymakers to locate and size EV charging stations. We consider a multi-year planning horizon, taking into account different charging technologies and different time periods (day and night). Accounting for these features, we propose an optimization model that minimizes total investment costs while ensuring a predetermined adequate level of demand coverage. In particular, the setup of charging stations is optimized every year, allowing for an increase in the number of chargers installed at charging stations set up in previous years. We have developed a tailored heuristic algorithm for the resulting problem. We validated our algorithm using case study instances based on the village of Gardone Val Trompia (Italy), the city of Barcelona (Spain), and the country of Luxembourg. Despite the variability in the sizes of the considered instances, our algorithm consistently provided high-quality results in short computational times, when compared to a commercial MILP solver. Produced solutions achieved optimality gaps within 7.5% in less than 90 s, often achieving computational times of less than 5 s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Funded by:EC | LEAP-REEC| LEAP-REAuthors: Davide Mazzoni; Manfred Hafner; Manfred Hafner;Nicolò Stevanato;
+5 AuthorsNicolò Stevanato
Nicolò Stevanato in OpenAIREDavide Mazzoni; Manfred Hafner; Manfred Hafner;Nicolò Stevanato;
Nicolò Stevanato;Nicolò Stevanato
Nicolò Stevanato in OpenAIREGiacomo Falchetta;
Giacomo Falchetta;Giacomo Falchetta
Giacomo Falchetta in OpenAIREEmanuela Colombo;
Emanuela Colombo
Emanuela Colombo in OpenAIREMagda Moner-Girona;
Magda Moner-Girona
Magda Moner-Girona in OpenAIREAbstract Globally about 800 million people live without electricity at home, over two thirds of which are in sub-Saharan Africa. Planning electricity access infrastructure and allocating resources efficiently requires a careful assessment of the diverse energy needs across space, time, and sectors. Because of data scarcity, most country or regional-scale electrification planning studies have however assumed a spatio-temporally homogeneous (top-down) potential electricity demand. Poorly representing the heterogeneity in the potential electricity demand across space, time, and energy sectors can lead to inappropriate energy planning, inaccurate energy system sizing, and misleading cost assessments. Here we introduce M-LED, a Multi-sectoral Latent Electricity Demand geospatial data processing platform to estimate electricity demand in communities that live in energy poverty. The platform shows how big data and bottom-up energy modelling can be leveraged together to represent the potential electricity demand with high spatio-temporal and sectoral granularity. We apply the methodology to Kenya as a country-study and devote specific attention to the implications for water-energy-agriculture-development interlinkages. A more detailed representation of the demand-side in large-scale electrification planning tools bears a potential for improving energy planning and policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac0cab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac0cab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Embargo end date: 09 Jun 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | EPSRC Centre for Doctoral..., EC | LADIE, +5 projectsUKRI| EPSRC Centre for Doctoral Training in Graphene Technology ,EC| LADIE ,[no funder available] ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional Nano ,EC| CHIRALSCOPY ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE) ,EC| GrapheneCore3 ,UKRI| Unravelling ultrafast charge recombination and transport dynamics in hybrid perovskites.Authors: Bourelle, Sean A; Camargo, Franco VA;Ghosh, Soumen;
Neumann, Timo; +5 AuthorsGhosh, Soumen
Ghosh, Soumen in OpenAIREBourelle, Sean A; Camargo, Franco VA;Ghosh, Soumen;
Neumann, Timo;Ghosh, Soumen
Ghosh, Soumen in OpenAIREVan De Goor, Tim WJ;
Van De Goor, Tim WJ
Van De Goor, Tim WJ in OpenAIREShivanna, Ravichandran;
Shivanna, Ravichandran
Shivanna, Ravichandran in OpenAIREWinkler, Thomas;
Cerullo, Giulio;Winkler, Thomas
Winkler, Thomas in OpenAIREDeschler, Felix;
Deschler, Felix
Deschler, Felix in OpenAIREpmid: 35680886
pmc: PMC9184503
AbstractOne of the open challenges of spintronics is to control the spin relaxation mechanisms. Layered metal-halide perovskites are an emerging class of semiconductors which possess a soft crystal lattice that strongly couples electronic and vibrational states and show promise for spintronic applications. Here, we investigate the impact of such strong coupling on the spin relaxation of excitons in the layered perovskite BA2FAPbI7 using a combination of cryogenic Faraday rotation and transient absorption spectroscopy. We report an unexpected increase of the spin lifetime by two orders of magnitude at 77 K under photoexcitation with photon energy in excess of the exciton absorption peak, and thus demonstrate optical control over the dominant spin relaxation mechanism. We attribute this control to strong coupling between excitons and optically excited phonons, which form polaronic states with reduced electron-hole wave function overlap that protect the exciton spin memory. Our insights highlight the special role of exciton-lattice interactions on the spin physics in the layered perovskites and provide a novel opportunity for optical spin control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30953-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30953-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu