- home
- Search
- Energy Research
- 12. Responsible consumption
- CN
- IT
- CA
- UNSW Sydney
- Energy Research
- 12. Responsible consumption
- CN
- IT
- CA
- UNSW Sydney
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Yafei Wang; Michalis Hadjikakou; Thomas Wiedmann; Thomas Wiedmann; Guangwu Chen;Cities are leading actions against climate change through global networks. More than 360 global cities announced during the 2015 Paris Climate Conference that the collective impact of their commitments will deliver over half of the world’s urban greenhouse gas emissions reductions by 2020. Previous studies on multi-city carbon footprint networks using sub-national, multi-region input-output (MRIO) modelling have identified additional opportunities for addressing the negative impacts of climate change through joint actions between cities within a country. However, similar links between city carbon footprints have not yet been studied across countries. In this study we focus on inter-city and inter-country carbon flows between two trading partners in a first attempt to address this gap. We construct a multi-scale, global MRIO model to describe a transnational city carbon footprint network among five Chinese megacities and the five largest Australian capital cities. First, we quantify city carbon footprints by sectors and regions. Based on the carbon map concept we show how local emissions reductions influence other regions’ carbon footprints. We then present a city emissions ’outsourcing hierarchy’ based on the balance of emissions embodied in intercity and international trade. The differences between cities and their position in the hierarchy emphasize the need for a bespoke treatment of their responsibilities towards climate change mitigation. Finally, we evaluate and discuss the potentially significant benefits of harmonising and aligning China’s carbon trading schemes with Australia’s cap and trade policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Haijiao Lu; Julie Tournet; Kamran Dastafkan; Yun Liu; Yun Hau Ng; Siva Krishna Karuturi; Chuan Zhao; Zongyou Yin;Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Chris Webster; Zhikang Bao; Wendy M.W. Lee; Weisheng Lu; Bin Chi;Abstract Construction waste materials are resources misplaced. Trading them across different jurisdictions is an innovative way to reuse or recycle the materials, which in turn obtains “cleaner production” in the construction sector. It can achieve a win-win situation between the demand and supply sides, but several hurdles must be overcome first. A particular hurdle is that demand and supply of such materials arises sporadically in discrete sites, thereby matching the two sides is not always opportune. We find parallels in the energy sector, where smart grids have been developed to store power generated sporadically by small producers and distribute it to individual users based on their (erratic) needs. Learning from smart grids, this research aims to shed light on innovative institutional arrangements promoting the development of an effective cross-jurisdictional construction waste material trading market. Underpinning this research is a mixed-method approach including cross-sectoral learning and a case study encompassing a series of site visits and semi-structured interviews in China’s Greater Bay Area. By comparing the commonalities between electricity and construction waste in terms of production, market, transmission, distribution, and consumption, we elaborate smart grid innovations and their possible applications to construction waste materials trading. Our research contributes to the body of knowledge on waste management, the circular economy, and the sharing economy. It will help establish a cross-jurisdictional waste material trading market in the Greater Bay Area. It also provides useful references to other regions in searching solutions for waste trading/sharing.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2014Publisher:Elsevier BV Authors: Jin, Wei; Zhang, ZhongXiang; Jin, Wei; Zhang, ZhongXiang;Whether China continues its current energy-intensive growth path or adopts a sustainable development prospect has significant implication for energy and climate governance. Building on a Ramsey-Cass-Koopmans growth model incorporating the mechanism of endogenous technological change and its interaction with fossil energy use and economic growth, this paper contributes to an economic exposition of China’s potential transition from an energy-intensive to an innovation-led growth path. We find that in China’s initial growth period the small amount of capital stock creates higher dynamic benefits of capital investment and incentives of capital stock accumulation rather than R&D-related innovation. Accumulation of energy-consuming capital stock along this non-innovation-led growth path thus leads to an intensive use of fossil energy - an energy-intensive growth pattern. To avoid this undesirable outcome, China’s social planner should consider locating a transition point to an innovation-led balanced growth path (BGP). When the growth dynamics reaches that transition point, China’s economy would embark on investment in physical capital and R&D simultaneously, and make a transition into the innovation-led BGP along which consumption, capital investment, and R&D have a balanced share. Also in this innovation-led BGP, consumption, physical capital stock, and knowledge stock all grow, fossil energy uses decline.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2533463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2533463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Xiaomei Shen; Hong Zheng; Mingdong Jiang; Xinxin Yu; Heyichen Xu; Guanyu Zhong;doi: 10.3390/land11071079
Urbanization is a powerful symbol and an inevitable human economic and social development trend. This process affects carbon dioxide emissions by changing the human output and lifestyle and encroaches over the carbon sink areas by adjusting the land use types impacting the regional carbon balance. We systematically analyzed the influence of urbanization on regional net CO2 emissions (NCE) and built a quantitative model for the impact of urbanization on NCE based on population, economy, and land use. Based on this, the Yangtze River Economic Belt (YREB) in China has been selected as an example to measure the characteristics of the spatial and temporal evolution of NCE from 2005 to 2018 by empirically testing the contributions of population urbanization, economic urbanization, and land urbanization to the NCE changes in YREB. According to the study’s findings, the carbon-neutral pressure index of the YREB increased over the study period, with an increase in NCE from 1706.50 Mt to 3106.05 Mt. The contribution of urbanization in this process increased and subsequently decreased in an inverted U pattern with a drop in the cumulative net emission of 260.32 Mt. The inflection points of the cumulative impact of urbanization on NCE in the midstream and upstream regions occurred in 2011 and 2010, respectively. Due to the high degree of urbanization and economic growth in the downstream area, the urbanization impact demonstrated a constant reduction of NCE over the research period. In terms of sub-dimensions, the population and land urbanization effects were consistently positive, while the economic urbanization affected the NCE and displayed an inverted U pattern during the study period. If the variation in regional carbon sink space is ignored, the impact of urbanization on CO2 emission reduction will be overestimated. We investigated the realization path of differentiated synergistic emission reduction strategies in the great river economic belts based on the empirical study on YREB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Sami Kara; Yang Yang; Yang Yang; Yang Yang; Kuishuang Feng; Michael Zwicky Hauschild; Morten Ryberg; Wei-Qiang Chen; Peng Wang; Peng Wang;AbstractSteel production is a difficult-to-mitigate sector that challenges climate mitigation commitments. Efforts for future decarbonization can benefit from understanding its progress to date. Here we report on greenhouse gas emissions from global steel production over the past century (1900-2015) by combining material flow analysis and life cycle assessment. We find that ~45 Gt steel was produced in this period leading to emissions of ~147 Gt CO2-eq. Significant improvement in process efficiency (~67%) was achieved, but was offset by a 44-fold increase in annual steel production, resulting in a 17-fold net increase in annual emissions. Despite some regional technical improvements, the industry’s decarbonization progress at the global scale has largely stagnated since 1995 mainly due to expanded production in emerging countries with high carbon intensity. Our analysis of future scenarios indicates that the expected demand expansion in these countries may jeopardize steel industry’s prospects for following 1.5 °C emission reduction pathways. To achieve the Paris climate goals, there is an urgent need for rapid implementation of joint supply- and demand-side mitigation measures around the world in consideration of regional conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22245-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 121 citations 121 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22245-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV John G. Groppo; James C. Hower; Uschi M. Graham; Colin R. Ward; M. Mercedes Maroto-Valer; Irena Kostova; Shifeng Dai;Abstract Unburned carbon (UC) in fly ash indicates inefficiency in combustion and may be an impediment to the beneficial use of fly ash or ash products in a variety of applications. The characteristics of the coal-derived UC are a function of the rank and type of the coal, as well as the size of the feed coal and the combustion conditions. At any coal rank, inertinite macerals are inherently more difficult to combust than the associated vitrinite, and some will have a tendency to appear in the fly ash more or less unchanged from their appearance in the feed coal. The nature of UCs resulting from vitrinite is dependent upon the coal rank. Low-rank huminite/vitrinite will tend to form an isotropic char; bituminous vitrinite will appear as isotropic and anisotropic cokes; and anthracite vitrinite, naturally anisotropic, is observed as partially combusted vitrinite fragments in the ash. The absorption of air entraining agents by UCs limits the use of high-UC fly ashes as a Portland cement substitute, with both standards organizations and regulatory bodies imposing limits on the acceptable UC concentrations. UC in fly ash can be used to adsorb organic compounds (such as phenols, dyes, herbicides, polychlorinated biphenyls, and petroleum constituents) and to capture trace elements (particularly Hg) from flue gas. UCs can also be used as sources of activated carbons, manufacture of graphite, and cokes in the metallurgical industry, as well as a source of carbon to feed back into the boiler. Beneficiation of fly ash to segregate relatively UC-free or UC-rich splits for beneficial re-use can be done by size classification, electrostatic separation, and froth flotation, as well as density separation, acid digestion, and incipient fluidization. Thermal processing may also be used to burn off the UC, leaving a relatively UC-free fly ash as the product.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2017.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2017.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Yafei Wang; Michalis Hadjikakou; Thomas Wiedmann; Thomas Wiedmann; Guangwu Chen;Cities are leading actions against climate change through global networks. More than 360 global cities announced during the 2015 Paris Climate Conference that the collective impact of their commitments will deliver over half of the world’s urban greenhouse gas emissions reductions by 2020. Previous studies on multi-city carbon footprint networks using sub-national, multi-region input-output (MRIO) modelling have identified additional opportunities for addressing the negative impacts of climate change through joint actions between cities within a country. However, similar links between city carbon footprints have not yet been studied across countries. In this study we focus on inter-city and inter-country carbon flows between two trading partners in a first attempt to address this gap. We construct a multi-scale, global MRIO model to describe a transnational city carbon footprint network among five Chinese megacities and the five largest Australian capital cities. First, we quantify city carbon footprints by sectors and regions. Based on the carbon map concept we show how local emissions reductions influence other regions’ carbon footprints. We then present a city emissions ’outsourcing hierarchy’ based on the balance of emissions embodied in intercity and international trade. The differences between cities and their position in the hierarchy emphasize the need for a bespoke treatment of their responsibilities towards climate change mitigation. Finally, we evaluate and discuss the potentially significant benefits of harmonising and aligning China’s carbon trading schemes with Australia’s cap and trade policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Haijiao Lu; Julie Tournet; Kamran Dastafkan; Yun Liu; Yun Hau Ng; Siva Krishna Karuturi; Chuan Zhao; Zongyou Yin;Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Chris Webster; Zhikang Bao; Wendy M.W. Lee; Weisheng Lu; Bin Chi;Abstract Construction waste materials are resources misplaced. Trading them across different jurisdictions is an innovative way to reuse or recycle the materials, which in turn obtains “cleaner production” in the construction sector. It can achieve a win-win situation between the demand and supply sides, but several hurdles must be overcome first. A particular hurdle is that demand and supply of such materials arises sporadically in discrete sites, thereby matching the two sides is not always opportune. We find parallels in the energy sector, where smart grids have been developed to store power generated sporadically by small producers and distribute it to individual users based on their (erratic) needs. Learning from smart grids, this research aims to shed light on innovative institutional arrangements promoting the development of an effective cross-jurisdictional construction waste material trading market. Underpinning this research is a mixed-method approach including cross-sectoral learning and a case study encompassing a series of site visits and semi-structured interviews in China’s Greater Bay Area. By comparing the commonalities between electricity and construction waste in terms of production, market, transmission, distribution, and consumption, we elaborate smart grid innovations and their possible applications to construction waste materials trading. Our research contributes to the body of knowledge on waste management, the circular economy, and the sharing economy. It will help establish a cross-jurisdictional waste material trading market in the Greater Bay Area. It also provides useful references to other regions in searching solutions for waste trading/sharing.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2014Publisher:Elsevier BV Authors: Jin, Wei; Zhang, ZhongXiang; Jin, Wei; Zhang, ZhongXiang;Whether China continues its current energy-intensive growth path or adopts a sustainable development prospect has significant implication for energy and climate governance. Building on a Ramsey-Cass-Koopmans growth model incorporating the mechanism of endogenous technological change and its interaction with fossil energy use and economic growth, this paper contributes to an economic exposition of China’s potential transition from an energy-intensive to an innovation-led growth path. We find that in China’s initial growth period the small amount of capital stock creates higher dynamic benefits of capital investment and incentives of capital stock accumulation rather than R&D-related innovation. Accumulation of energy-consuming capital stock along this non-innovation-led growth path thus leads to an intensive use of fossil energy - an energy-intensive growth pattern. To avoid this undesirable outcome, China’s social planner should consider locating a transition point to an innovation-led balanced growth path (BGP). When the growth dynamics reaches that transition point, China’s economy would embark on investment in physical capital and R&D simultaneously, and make a transition into the innovation-led BGP along which consumption, capital investment, and R&D have a balanced share. Also in this innovation-led BGP, consumption, physical capital stock, and knowledge stock all grow, fossil energy uses decline.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2533463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2533463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Xiaomei Shen; Hong Zheng; Mingdong Jiang; Xinxin Yu; Heyichen Xu; Guanyu Zhong;doi: 10.3390/land11071079
Urbanization is a powerful symbol and an inevitable human economic and social development trend. This process affects carbon dioxide emissions by changing the human output and lifestyle and encroaches over the carbon sink areas by adjusting the land use types impacting the regional carbon balance. We systematically analyzed the influence of urbanization on regional net CO2 emissions (NCE) and built a quantitative model for the impact of urbanization on NCE based on population, economy, and land use. Based on this, the Yangtze River Economic Belt (YREB) in China has been selected as an example to measure the characteristics of the spatial and temporal evolution of NCE from 2005 to 2018 by empirically testing the contributions of population urbanization, economic urbanization, and land urbanization to the NCE changes in YREB. According to the study’s findings, the carbon-neutral pressure index of the YREB increased over the study period, with an increase in NCE from 1706.50 Mt to 3106.05 Mt. The contribution of urbanization in this process increased and subsequently decreased in an inverted U pattern with a drop in the cumulative net emission of 260.32 Mt. The inflection points of the cumulative impact of urbanization on NCE in the midstream and upstream regions occurred in 2011 and 2010, respectively. Due to the high degree of urbanization and economic growth in the downstream area, the urbanization impact demonstrated a constant reduction of NCE over the research period. In terms of sub-dimensions, the population and land urbanization effects were consistently positive, while the economic urbanization affected the NCE and displayed an inverted U pattern during the study period. If the variation in regional carbon sink space is ignored, the impact of urbanization on CO2 emission reduction will be overestimated. We investigated the realization path of differentiated synergistic emission reduction strategies in the great river economic belts based on the empirical study on YREB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Sami Kara; Yang Yang; Yang Yang; Yang Yang; Kuishuang Feng; Michael Zwicky Hauschild; Morten Ryberg; Wei-Qiang Chen; Peng Wang; Peng Wang;AbstractSteel production is a difficult-to-mitigate sector that challenges climate mitigation commitments. Efforts for future decarbonization can benefit from understanding its progress to date. Here we report on greenhouse gas emissions from global steel production over the past century (1900-2015) by combining material flow analysis and life cycle assessment. We find that ~45 Gt steel was produced in this period leading to emissions of ~147 Gt CO2-eq. Significant improvement in process efficiency (~67%) was achieved, but was offset by a 44-fold increase in annual steel production, resulting in a 17-fold net increase in annual emissions. Despite some regional technical improvements, the industry’s decarbonization progress at the global scale has largely stagnated since 1995 mainly due to expanded production in emerging countries with high carbon intensity. Our analysis of future scenarios indicates that the expected demand expansion in these countries may jeopardize steel industry’s prospects for following 1.5 °C emission reduction pathways. To achieve the Paris climate goals, there is an urgent need for rapid implementation of joint supply- and demand-side mitigation measures around the world in consideration of regional conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22245-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 121 citations 121 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22245-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV John G. Groppo; James C. Hower; Uschi M. Graham; Colin R. Ward; M. Mercedes Maroto-Valer; Irena Kostova; Shifeng Dai;Abstract Unburned carbon (UC) in fly ash indicates inefficiency in combustion and may be an impediment to the beneficial use of fly ash or ash products in a variety of applications. The characteristics of the coal-derived UC are a function of the rank and type of the coal, as well as the size of the feed coal and the combustion conditions. At any coal rank, inertinite macerals are inherently more difficult to combust than the associated vitrinite, and some will have a tendency to appear in the fly ash more or less unchanged from their appearance in the feed coal. The nature of UCs resulting from vitrinite is dependent upon the coal rank. Low-rank huminite/vitrinite will tend to form an isotropic char; bituminous vitrinite will appear as isotropic and anisotropic cokes; and anthracite vitrinite, naturally anisotropic, is observed as partially combusted vitrinite fragments in the ash. The absorption of air entraining agents by UCs limits the use of high-UC fly ashes as a Portland cement substitute, with both standards organizations and regulatory bodies imposing limits on the acceptable UC concentrations. UC in fly ash can be used to adsorb organic compounds (such as phenols, dyes, herbicides, polychlorinated biphenyls, and petroleum constituents) and to capture trace elements (particularly Hg) from flue gas. UCs can also be used as sources of activated carbons, manufacture of graphite, and cokes in the metallurgical industry, as well as a source of carbon to feed back into the boiler. Beneficiation of fly ash to segregate relatively UC-free or UC-rich splits for beneficial re-use can be done by size classification, electrostatic separation, and froth flotation, as well as density separation, acid digestion, and incipient fluidization. Thermal processing may also be used to burn off the UC, leaving a relatively UC-free fly ash as the product.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2017.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2017.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu