- home
- Search
- Energy Research
- US
- GB
- EU
- CD
- Wageningen Staff Publications
- Energy Research
- US
- GB
- EU
- CD
- Wageningen Staff Publications
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Authors:Frédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
+30 AuthorsAtul K. Jain
Atul K. Jain in OpenAIREFrédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
Atul K. Jain
Atul K. Jain in OpenAIRERoxana Petrescu;
Roxana Petrescu
Roxana Petrescu in OpenAIRERobert J. Scholes;
Robert J. Scholes
Robert J. Scholes in OpenAIREPep Canadell;
Pep Canadell
Pep Canadell in OpenAIREMasayuki Kondo;
Hui Yang;Masayuki Kondo
Masayuki Kondo in OpenAIREMarielle Saunois;
Marielle Saunois
Marielle Saunois in OpenAIREBo Zheng;
Wouter Peters; Wouter Peters;Bo Zheng
Bo Zheng in OpenAIREBenjamin Poulter;
Benjamin Poulter; Benjamin Poulter;Benjamin Poulter
Benjamin Poulter in OpenAIREMatthew W. Jones;
Matthew W. Jones
Matthew W. Jones in OpenAIREHanqin Tian;
Hanqin Tian
Hanqin Tian in OpenAIREXuhui Wang;
Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald;Xuhui Wang
Xuhui Wang in OpenAIREIngrid T. Luijkx;
Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow;Ingrid T. Luijkx
Ingrid T. Luijkx in OpenAIREChunjing Qiu;
Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIREAna Bastos;
Ana Bastos
Ana Bastos in OpenAIREAbstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:Zenodo Funded by:EC | MAGNITUDEEC| MAGNITUDEKessels, Kris; Madani, Mehdi; Mou, Yuting; Sels, Peter; Shariat Torbaghan, Shahab; Virag, Ana;Dataset (partial) for the journal article Torbaghan, Shahab Shariat, et al. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms." Applied Energy 285 (2021): 116390. https://doi.org/10.1016/j.apenergy.2020.116390 Historical electricity bids obtained from the website of GME, the Italian power exchange, cannot be redistributed and are not included in the present dataset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 99visibility views 99 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 NetherlandsPublisher:Zenodo Funded by:EC | SOS.aquaterra, AKA | Global Water Scarcity Atl...EC| SOS.aquaterra ,AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO)Authors:Horton, Alexander J.;
Kummu, Matti; Triet, Nguyen V.K.;Horton, Alexander J.
Horton, Alexander J. in OpenAIREHoang, Long P.;
Hoang, Long P.
Hoang, Long P. in OpenAIREBaseline and future (2036-2065) river water levels and discharges at 4 gauging stations along the Cambodian Mekong (Kratie, Kampong Cham, Chrouy Changva, and Neak Loeung) under different scenarios of climate change (RCP 4.5 and 8.5) and infrastructural developments. Average depth and duration flood maps are also included for each scenario. A full description of the methods and results can be found in the article: Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu. (2022). The Cambodian Mekong floodplain under future development plans and climate change. Nat. Hazards Earth Syst. Sci.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6341785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6341785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:Zenodo Authors: Kong, Xiangzhen; Determann, Maria; Andersen, Tobias Kuhlmann; Barbosa, Carolina Cerqueira; +6 AuthorsKong, Xiangzhen; Determann, Maria; Andersen, Tobias Kuhlmann; Barbosa, Carolina Cerqueira; Dadi, Tallent;Janssen, Annette B.G.;
Paule-Mercado, Ma Cristina; Pujoni, Diego Guimarães Florencio; Schultze, Martin; Rinke, Karsten;Janssen, Annette B.G.
Janssen, Annette B.G. in OpenAIREThis repository contains the dataset linked to the following publication: Article title: Synergistic effects of warming and internal nutrient loading interfere with the long-term stability of lake restoration and induce sudden re-eutrophication Journal: Environmental Science & Technology DOI: 10.1021/acs.est.2c07181 Abstract: Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring dataset covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes. SYNOPSIS: Warming synergistically promotes re-eutrophication with internal nutrient loading and exacerbates cyanobacterial blooms in urban lakes 30 years after phosphorus mitigation. Data description by Xiangzhen Kong (xzkong@niglas.ac.cn), 2023-02-20 ---Wet chemical analysis on water samples taken at five depths (0.5, 2.5, 5.0, 7.0 and 9.0 m) from the deepest point in the lake (BA1) at biweekly intervals from 2018.5-2021.8. File name: BAB_BA1_TN_mgL.obs (total nitrogen concentration) BAB_BA1_NH4_mgL.obs (ammonium nitrogen concentration) BAB_BA1_NO3_mgL.obs (nitrate nitrogen concentration) BAB_BA1_TP_mgL.obs (total phosphorus concentration) BAB_BA1_SRP_mgL.obs (Soluble reactive phosphorus concentration) BAB_BA1_DP_mgL.obs (dissolved P concentration) BAB_BA1_DOC_mgL.obs (Dissolved organic carbon concentration) BAB_BA1_Si_mgL.obs (dissolved silicon concentration) BAB_BA1_Chla_HPLC_DIN_mgL.obs (Chl-a concentration) ---CTD probe profile data from the deepest point in the lake (BA1) from 2017.8 to 2021.8 at biweekly basis with approximately 0.1 m vertical resolution File name: t_prof_file_barleber_ctm644.obs (water temperature) oxy_prof_file_barleber_ctm644 (Dissolved oxygen) turb_prof_file_barleber_ctm644.obs (Turbidity) chla_prof_file_barleber_ctm644.obs (Chl-a concentration) ---BBE probe profile data from the deepest point in the lake (BA1) from 2017.8 to 2021.8 at biweekly basis with approximately 0.1 m vertical resolution File name: totalChla_prof_file_barleber_FP2101.obs (Chl-a concentration) bluegreen_prof_file_barleber_FP2101.obs (Blue-green algae Chl-a concentration) green_prof_file_barleber_FP2101.obs (Green algae Chl-a concentration) diatom_prof_file_barleber_FP2101.obs (Diatom Chl-a concentration)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7580960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7580960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:Zenodo Authors:Xu, Liang;
Xu, Liang
Xu, Liang in OpenAIRESaatchi, Sassan S.;
Yang, Yan; Yu, Yifan; +15 AuthorsSaatchi, Sassan S.
Saatchi, Sassan S. in OpenAIREXu, Liang;
Xu, Liang
Xu, Liang in OpenAIRESaatchi, Sassan S.;
Yang, Yan; Yu, Yifan; Pongratz, Julia; Bloom, A. Anthony; Bowman, Kevin; Worden, John; Liu, Junjie; Yin, Yi; Domke, Grant; McRoberts, Ronald E.; Woodall, Christopher;Saatchi, Sassan S.
Saatchi, Sassan S. in OpenAIRENabuurs, Gert-Jan;
de-Miguel, Sergio; Keller, Michael; Nancy, Harris; Maxwell, Sean; Schimel, David;Nabuurs, Gert-Jan
Nabuurs, Gert-Jan in OpenAIRELive woody vegetation is the largest reservoir of biomass carbon with its restoration considered one of the most effective natural climate solutions. However, carbon fluxes associated with terrestrial ecosystems still remain the largest source of uncertainty of the global carbon balance. Here, we develop spatially explicit estimates of global carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show live biomass has removed 4.9-5.5 PgC yr-1 from the atmosphere in this century, offsetting 4.6±0.1 PgC yr-1 of gross emissions from land-use and environmental disturbances and adding substantially (0.23-0.88 PgC yr-1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4161694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4161694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAuthors:Anna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREPeter M. Cox;
Peter M. Cox
Peter M. Cox in OpenAIREPierre Friedlingstein;
Andy J. Wiltshire; +17 AuthorsPierre Friedlingstein
Pierre Friedlingstein in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREPeter M. Cox;
Peter M. Cox
Peter M. Cox in OpenAIREPierre Friedlingstein;
Andy J. Wiltshire;Pierre Friedlingstein
Pierre Friedlingstein in OpenAIREChris D. Jones;
Chris D. Jones
Chris D. Jones in OpenAIREStephen Sitch;
Stephen Sitch
Stephen Sitch in OpenAIRELina M. Mercado;
Margriet Groenendijk; Eddy Robertson;Lina M. Mercado
Lina M. Mercado in OpenAIREJens Kattge;
Gerhard Bönisch;Jens Kattge
Jens Kattge in OpenAIREOwen K. Atkin;
Owen K. Atkin
Owen K. Atkin in OpenAIREMichael Bahn;
Johannes Cornelissen;Michael Bahn
Michael Bahn in OpenAIREÜlo Niinemets;
Vladimir Onipchenko;Ülo Niinemets
Ülo Niinemets in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIRELourens Poorter;
Lourens Poorter
Lourens Poorter in OpenAIREPeter B. Reich;
Nadjeda A. Soudzilovskaia;Peter B. Reich
Peter B. Reich in OpenAIREPeter van Bodegom;
Peter van Bodegom
Peter van Bodegom in OpenAIREAbstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Wiley Funded by:EC | PLANT FELLOWSEC| PLANT FELLOWSAuthors: Koorem, K.; Kostenko, O.;Snoek, L.B.;
Snoek, L.B.
Snoek, L.B. in OpenAIREWeser, Carolin;
+3 AuthorsWeser, Carolin
Weser, Carolin in OpenAIREKoorem, K.; Kostenko, O.;Snoek, L.B.;
Snoek, L.B.
Snoek, L.B. in OpenAIREWeser, Carolin;
Weser, Carolin
Weser, Carolin in OpenAIRERamirez, Kelly;
Ramirez, Kelly
Ramirez, Kelly in OpenAIREWilschut, Rutger;
Wilschut, Rutger
Wilschut, Rutger in OpenAIREvan der Putten, W.H.;
van der Putten, W.H.
van der Putten, W.H. in OpenAIREGlobal warming is enabling many plant species to expand their range to higher latitudes and altitudes, where they may suffer less from natural aboveground and belowground enemies. Reduced control by natural enemies can enable climate warming‐induced range expanders to gain an advantage in competition with natives and become disproportionally abundant in their new range. However, so far studies have only examined individual growth of range expanders, which have common congeneric plant species in their new range. Thus it is not known how general is this reduced effect of above‐ and belowground enemies and how it operates in communities, where multiple plant species also interact with each other. Here we show that range‐expanding plant species with and without congenerics in the invaded habitats differ in their ecological interactions in the new range. In a community‐level experiment, range‐expanding plant species, both with and without congenerics, suppressed the growth of a herbivore. However, only range expanders without congenerics reduced biomass production of the native plant species. In the present study, range expanders without congenerics allocated more biomass aboveground compared to native plant species, which can explain their competitive advantage. Competitive interaction and also biomass allocation of native plants and their congeneric range expanders were similar. Our results highlight that information about species phylogenetic relatedness with native flora can be crucial for improving predictions about the consequences of climate warming‐induced range expansions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.04817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.04817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors:Yueling Qi;
Yueling Qi
Yueling Qi in OpenAIREAdam Ossowicki;
Adam Ossowicki
Adam Ossowicki in OpenAIREXiaomei Yang;
Xiaomei Yang
Xiaomei Yang in OpenAIREEsperanza Huerta Lwanga;
+3 AuthorsEsperanza Huerta Lwanga
Esperanza Huerta Lwanga in OpenAIREYueling Qi;
Yueling Qi
Yueling Qi in OpenAIREAdam Ossowicki;
Adam Ossowicki
Adam Ossowicki in OpenAIREXiaomei Yang;
Xiaomei Yang
Xiaomei Yang in OpenAIREEsperanza Huerta Lwanga;
Esperanza Huerta Lwanga
Esperanza Huerta Lwanga in OpenAIREFrancisco Dini-Andreote;
Violette Geissen;Francisco Dini-Andreote
Francisco Dini-Andreote in OpenAIREPaolina Garbeva;
Paolina Garbeva
Paolina Garbeva in OpenAIREpmid: 31806445
Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hazardous MaterialsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Journal of Hazardous MaterialsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2019.121711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 423 citations 423 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hazardous MaterialsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Journal of Hazardous MaterialsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2019.121711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, Denmark, Australia, Australia, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Authors: Peter K. Snyder; Brian Walker; Brian Walker;Hans Joachim Schellnhuber;
+37 AuthorsHans Joachim Schellnhuber
Hans Joachim Schellnhuber in OpenAIREPeter K. Snyder; Brian Walker; Brian Walker;Hans Joachim Schellnhuber;
Hans Joachim Schellnhuber; Sander van der Leeuw; Louise Karlberg; Louise Karlberg; James Hansen;Hans Joachim Schellnhuber
Hans Joachim Schellnhuber in OpenAIREÅsa Persson;
Åsa Persson;Åsa Persson
Åsa Persson in OpenAIREEric F. Lambin;
Eric F. Lambin
Eric F. Lambin in OpenAIRERobert Costanza;
Robert Costanza;Robert Costanza
Robert Costanza in OpenAIREJohan Rockström;
Johan Rockström; Will Steffen; Will Steffen; Malin Falkenmark; Malin Falkenmark;Johan Rockström
Johan Rockström in OpenAIRECarl Folke;
Carl Folke; Timothy M. Lenton;Carl Folke
Carl Folke in OpenAIREF. Stuart Chapin;
F. Stuart Chapin
F. Stuart Chapin in OpenAIRETerry P. Hughes;
Jonathan A. Foley; Marten Scheffer;Terry P. Hughes
Terry P. Hughes in OpenAIREKevin J. Noone;
Robert W. Corell; Sverker Sörlin; Sverker Sörlin; Victoria J. Fabry; Paul J. Crutzen; Uno Svedin;Kevin J. Noone
Kevin J. Noone in OpenAIRECynthia A. de Wit;
Björn Nykvist; Björn Nykvist;Cynthia A. de Wit
Cynthia A. de Wit in OpenAIREKatherine Richardson;
Diana Liverman; Diana Liverman; Henning Rodhe;Katherine Richardson
Katherine Richardson in OpenAIRENew approach proposed for defining preconditions for human development Crossing certain biophysical thresholds could have disastrous consequences for humanity Three of nine interlinked planetary boundaries have already been overstepped
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/35227Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/461472a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9K citations 8,524 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/35227Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/461472a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors:Birger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur; +16 AuthorsTorsten Sachs
Torsten Sachs in OpenAIREBirger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur;Torsten Sachs
Torsten Sachs in OpenAIRETorben R. Christensen;
Torben R. Christensen;Torben R. Christensen
Torben R. Christensen in OpenAIREWalter C. Oechel;
Walter C. Oechel
Walter C. Oechel in OpenAIRELars Kutzbach;
Adrian V. Rocha;Lars Kutzbach
Lars Kutzbach in OpenAIREWerner Eugster;
Magnus Lund;Werner Eugster
Werner Eugster in OpenAIREM. K. van der Molen;
Mika Aurela;M. K. van der Molen
M. K. van der Molen in OpenAIREThomas Friborg;
Thomas Friborg
Thomas Friborg in OpenAIREFrans-Jan W. Parmentier;
Frans-Jan W. Parmentier;Frans-Jan W. Parmentier
Frans-Jan W. Parmentier in OpenAIREElyn Humphreys;
Elyn Humphreys
Elyn Humphreys in OpenAIREDaniel P. Rasse;
Daniel P. Rasse
Daniel P. Rasse in OpenAIREMikkel P. Tamstorf;
Mikkel P. Tamstorf
Mikkel P. Tamstorf in OpenAIREHerbert N. Mbufong;
Herbert N. Mbufong
Herbert N. Mbufong in OpenAIREAbstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu