- home
- Search
- Energy Research
- 2021-2025
- Open Access
- Closed Access
- Open Source
- CN
- DE
- FR
- Energy Research
- 2021-2025
- Open Access
- Closed Access
- Open Source
- CN
- DE
- FR
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:[no funder available]Authors: Paprotny, Dominik;The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The University of Hong Kong Authors: Lishan Ran (9057026);This is the dataset for our research on assessing CO2 emissions from Chinese inland waters, including streams, rivers, lakes and reservoirs. The dataset includes three parts, including Part 1: Lakes and Reservoirs_1980s, Part 2: CO2 Dataset_2010s, and Part 3: Water chemistry records. Detailed information on these data can be found from the 'README' text file.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 21 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 21 Nov 2023Publisher:Harvard Dataverse Authors: Odersky, Moritz; Löffler, Max;doi: 10.7910/dvn/puu3nf
Journal of Economic Inequality, accepted
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Computer Network Information Center, Chinese Academy of Sciences Authors: lei zhang (10860255);Supplementary Information is available for this paper.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Al-Bitar, Ahmad; Veronika, Antonenko;Wheat Biomass for Kherson and Poltava regions in Ukraine The dataset contains Dry Above Ground Biomass (DAM) estimates over the Kherson and Poltava regions in Ukraine for years 2020,2021 and 2022. - Processing:The processing is done using the AgriCarbon-EOv1.5 processing chain, using the TREX processing centre at CNES France.The input remote sensing data are L2A Sentinel-2 surface reflectances provided by the MAJA processing chain based on the Copernicus Sentinel-2 L1C data.The Landcover maps are provided using ML Deep learning based on the Copernicus L2A data.The daily weather data is extracted from ERA5Land products (C3S). -Geophysical variable:Dry Above ground biomass of winter wheat in g/m2. - Extents: * DAM estimates over the Copernicus Sentinel-2 tile 36TWT cover the Kherson region.* DAM estimates over the Copernicus Sentinel-2 tile 36UVA cover the Poltava region. - Spatial resolution:10m resolution estimlates over wheat plots identified in the landcover map. - Temporal coverage:Estimates are provided at the end of the wheat cycle for cycles:* The year 2020 correspond to cycle: 2019-2020* The year 2021 corresponds to cycle : 2020-2021* The year 2022 corresponds to cycle : 2021-2022 - Projection: EPSG:32636 - File content: Each Raster file has 2 bands containing respectively: * band1: mean value of DAM in g/m2. * band2: standard deviation of DAM in g/m2. - List of maps:* Dry_aboveground_biomass_2020_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2020_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2021_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2021_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2022_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2022_T36UVA_Poltava_Ukraine.tif
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Alexander-Haw, Abigail; Dütschke, Elisabeth; Janßen, Hannah; Preuß, Sabine; Schleich, Joachim; Tröger, Josephine; Tschaut, Mareike;This dataset and codebook correspond to the second round of survey data gathered in Denmark in 2023, within the project FULFILL - Fundamental Decarbonisation Through Sufficiency By Lifestyle Changes. As part of Work Package 3 (WP3) in the FULFILL project, we collected quantitative data from six countries: Denmark, France, Germany, Italy, Latvia, and India. The first round of the survey, consisted of recruiting a representative sample of approximately 2000 households in each country. In this second survey round, we recruit around 500 respondents from the initial survey round, ensuring representativity is maintained. This survey is very similar to the survey in the first round and includes a lot of identical items, including a quantitative assessment of the carbon footprint in the housing, mobility, and diet sectors, socio-economic factors such as age, gender, income, education, household size, life stage, and political orientation. Furthermore, the survey includes measures of quality of life, encompassing aspects such as health and well-being, environmental quality, financial security, and comfort. New for this second round, we have incorporated questions regarding the measures respondents adopted in response to the 2022 energy crisis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Authors: Ferron, Bruno; Leizour, Stephane; Hamon, Michel; Peden, Olivier;doi: 10.17882/98361
This data publication provides two datasets of turbulent kinetic energy dissipation rates sampled during the MomarSat 2022 cruise. One dataset was gathered with a deep autonomous Vertical Microstructure Profiler (VMP-6000). The second dataset was gathered with the MicroRiYo mooring as described in the reference paper (Ferron et al. 2024). The two datasets, one for each instrument, are available as tar files. Each tar file contains fourteen NetCDF files. Each NetCDF file contains the dissipation rate profile, the time (UTC) of the profile start, the geographical position (deployment of the VMP or mooring position), and the mean pressure for each dissipation rate estimate (two estimates at each pressure level from the two shear sensors). Each dissipation rate comes with a quality control matrix QC (14 x 4) that characterizes how the associated mean shear spectrum fitted the expected theoretical Nasmyth spectrum: QC( 1:10, 1 ) : Value of the 10 criteria used (see reference paper) for the dissipation rates of shear 1. QC( 1:10, 2 ): Criteria met (=1) or not met (=0) for shear 1 dissipation rates. QC(11,1): Same criteria as QC(10,1) expressed in terms of mean absolute deviation (MAD) instead of variance (see Lueck et al. 2022) (shear 1). QC(11,2): state whether criteria QC(11,1) is met (=1) or not met (=0) (shear 1). QC(12,1): Number of shear spectra averaged to compute one dissipation rate estimate (shear 1). QC(12,2): Number of accelerometer used to remove vibrations (Goodman et al. 2006; Lueck et al. 2022; Ferron et al. 2023) (shear 1) QC(13,1): MAD (shear 1) QC(13,2): unused QC(14,1): index of first used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(14,2): index of last used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(:,3): same as QC(:,1) for shear 2. QC(:,4): same as QC(:,2) for shear 2. Shear data were processed following the processing flow chart of the Atomix SCOR Working Group 160 (https://wiki.app.uib.no/atomix/index.php?title=Flow_chart_for_shear_probes). References: Ferron, B., S. Leizour, M. Hamon, O. Peden, 2024: MicroRiYo : An observing system for deep repeated profiles of kinetic energy dissipation rates from shear-microstructure turbulence along a mooring line, submitted to J. Atmos. Ocean. Tech. Lueck, R. G., 2022: The Statistics of Oceanic Turbulence Measurements. Part II: Shear Spectra and a New Spectral Model. J. Atmos. Oceanic Technol., 39, 1273–1282, https://doi.org/10.1175/JTECH-D-21-0050.1.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:[no funder available]Authors: Paprotny, Dominik;The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The University of Hong Kong Authors: Lishan Ran (9057026);This is the dataset for our research on assessing CO2 emissions from Chinese inland waters, including streams, rivers, lakes and reservoirs. The dataset includes three parts, including Part 1: Lakes and Reservoirs_1980s, Part 2: CO2 Dataset_2010s, and Part 3: Water chemistry records. Detailed information on these data can be found from the 'README' text file.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 21 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 21 Nov 2023Publisher:Harvard Dataverse Authors: Odersky, Moritz; Löffler, Max;doi: 10.7910/dvn/puu3nf
Journal of Economic Inequality, accepted
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Computer Network Information Center, Chinese Academy of Sciences Authors: lei zhang (10860255);Supplementary Information is available for this paper.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Al-Bitar, Ahmad; Veronika, Antonenko;Wheat Biomass for Kherson and Poltava regions in Ukraine The dataset contains Dry Above Ground Biomass (DAM) estimates over the Kherson and Poltava regions in Ukraine for years 2020,2021 and 2022. - Processing:The processing is done using the AgriCarbon-EOv1.5 processing chain, using the TREX processing centre at CNES France.The input remote sensing data are L2A Sentinel-2 surface reflectances provided by the MAJA processing chain based on the Copernicus Sentinel-2 L1C data.The Landcover maps are provided using ML Deep learning based on the Copernicus L2A data.The daily weather data is extracted from ERA5Land products (C3S). -Geophysical variable:Dry Above ground biomass of winter wheat in g/m2. - Extents: * DAM estimates over the Copernicus Sentinel-2 tile 36TWT cover the Kherson region.* DAM estimates over the Copernicus Sentinel-2 tile 36UVA cover the Poltava region. - Spatial resolution:10m resolution estimlates over wheat plots identified in the landcover map. - Temporal coverage:Estimates are provided at the end of the wheat cycle for cycles:* The year 2020 correspond to cycle: 2019-2020* The year 2021 corresponds to cycle : 2020-2021* The year 2022 corresponds to cycle : 2021-2022 - Projection: EPSG:32636 - File content: Each Raster file has 2 bands containing respectively: * band1: mean value of DAM in g/m2. * band2: standard deviation of DAM in g/m2. - List of maps:* Dry_aboveground_biomass_2020_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2020_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2021_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2021_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2022_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2022_T36UVA_Poltava_Ukraine.tif
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Alexander-Haw, Abigail; Dütschke, Elisabeth; Janßen, Hannah; Preuß, Sabine; Schleich, Joachim; Tröger, Josephine; Tschaut, Mareike;This dataset and codebook correspond to the second round of survey data gathered in Denmark in 2023, within the project FULFILL - Fundamental Decarbonisation Through Sufficiency By Lifestyle Changes. As part of Work Package 3 (WP3) in the FULFILL project, we collected quantitative data from six countries: Denmark, France, Germany, Italy, Latvia, and India. The first round of the survey, consisted of recruiting a representative sample of approximately 2000 households in each country. In this second survey round, we recruit around 500 respondents from the initial survey round, ensuring representativity is maintained. This survey is very similar to the survey in the first round and includes a lot of identical items, including a quantitative assessment of the carbon footprint in the housing, mobility, and diet sectors, socio-economic factors such as age, gender, income, education, household size, life stage, and political orientation. Furthermore, the survey includes measures of quality of life, encompassing aspects such as health and well-being, environmental quality, financial security, and comfort. New for this second round, we have incorporated questions regarding the measures respondents adopted in response to the 2022 energy crisis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Authors: Ferron, Bruno; Leizour, Stephane; Hamon, Michel; Peden, Olivier;doi: 10.17882/98361
This data publication provides two datasets of turbulent kinetic energy dissipation rates sampled during the MomarSat 2022 cruise. One dataset was gathered with a deep autonomous Vertical Microstructure Profiler (VMP-6000). The second dataset was gathered with the MicroRiYo mooring as described in the reference paper (Ferron et al. 2024). The two datasets, one for each instrument, are available as tar files. Each tar file contains fourteen NetCDF files. Each NetCDF file contains the dissipation rate profile, the time (UTC) of the profile start, the geographical position (deployment of the VMP or mooring position), and the mean pressure for each dissipation rate estimate (two estimates at each pressure level from the two shear sensors). Each dissipation rate comes with a quality control matrix QC (14 x 4) that characterizes how the associated mean shear spectrum fitted the expected theoretical Nasmyth spectrum: QC( 1:10, 1 ) : Value of the 10 criteria used (see reference paper) for the dissipation rates of shear 1. QC( 1:10, 2 ): Criteria met (=1) or not met (=0) for shear 1 dissipation rates. QC(11,1): Same criteria as QC(10,1) expressed in terms of mean absolute deviation (MAD) instead of variance (see Lueck et al. 2022) (shear 1). QC(11,2): state whether criteria QC(11,1) is met (=1) or not met (=0) (shear 1). QC(12,1): Number of shear spectra averaged to compute one dissipation rate estimate (shear 1). QC(12,2): Number of accelerometer used to remove vibrations (Goodman et al. 2006; Lueck et al. 2022; Ferron et al. 2023) (shear 1) QC(13,1): MAD (shear 1) QC(13,2): unused QC(14,1): index of first used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(14,2): index of last used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(:,3): same as QC(:,1) for shear 2. QC(:,4): same as QC(:,2) for shear 2. Shear data were processed following the processing flow chart of the Atomix SCOR Working Group 160 (https://wiki.app.uib.no/atomix/index.php?title=Flow_chart_for_shear_probes). References: Ferron, B., S. Leizour, M. Hamon, O. Peden, 2024: MicroRiYo : An observing system for deep repeated profiles of kinetic energy dissipation rates from shear-microstructure turbulence along a mooring line, submitted to J. Atmos. Ocean. Tech. Lueck, R. G., 2022: The Statistics of Oceanic Turbulence Measurements. Part II: Shear Spectra and a New Spectral Model. J. Atmos. Oceanic Technol., 39, 1273–1282, https://doi.org/10.1175/JTECH-D-21-0050.1.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu