search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
200,312 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • CN
  • EU
  • EG

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jilei Ye; Chao Wu; Changlong Ma; Zijie Yuan; +5 Authors

    The battery power state (SOP) is the basic indicator for the Battery management system (BMS) of the battery energy storage system (BESS) to formulate control strategies. Although there have been many studies on state estimation of lithium-ion batteries (LIBs), aging and temperature variation are seldom considered in peak power prediction during the whole life of the battery. To fill this gap, this paper aims to propose an adaptive peak power prediction method for power lithium-ion batteries considering temperature and aging is proposed. First, the Thevenin equivalent circuit model is used to jointly estimate the state of charge (SOC) and SOP of the lithium-ion power battery, and the variable forgetting factor recursive least squares (VFF-RLS) algorithm and extended Kalman filter (EKF) are utilized to identify the battery parameters online. Then, multiple constraint parameters including current, voltage, and SOC were derived, considering the dependence of the polarization resistance of the battery on the battery current. Finally, the verification experiment was carried out with LiFePO4 battery. The experimental results under FUDS operating conditions show that the maximum SOC estimation error is 1.94%. And the power prediction errors at 20%, 50%, and 70% SOC were 5.0%, 8.1% and 4.5%, respectively. Our further work will focus on the joint estimation of battery state to further improve the accuracy.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xue-bo Zhang; Lin-xiu Han; Jing-zhang Ren; Jia-jia Liu;

    AbstractVentilation door are commonly found in tunnels and other underground engineering ventilation structures, disaster periods using its explosion isolation, explosion relief, wind regulation characteristics for disaster prevention and mitigation is of great significance. This paper numerically simulates the propagation characteristics of the gas explosion shock wave in the nearby tunnel when the ventilation door are opened at different degrees, and analyzes the influence mechanism of the opening degree on the change law of the shock wave overpressure distribution in the nearby tunnel. The results show that the shock wave forms a strong turbulence area (high pressure area) on both sides in front of the ventilation door, and the area range and the overpressure value decrease with the increase of the opening degree; the ventilation door reduce the intensity of the shock wave, so that the overpressure behind the ventilation door decreases, and the smaller the opening degree, the lower the overpressure behind the ventilation door. The secondary explosion formed shock wave and the ventilation door reflected shock wave meet to form a stronger shock wave, which leads to different opening degrees of ventilation door, its before, after the roadway and after the bifurcation of the main roadway in the measured points of the overpressure change curve is different, the main difference is that the peak overpressure for the first wave or the second wave peak. The peak overpressure in the tunnel before and after the ventilation door decreases and increases respectively with the increase of the opening length, and the overall decay of the peak overpressure at 5 m and 10 m before the ventilation door is 49.56% and 4.04% respectively and only has an effect on the peak overpressure in main tunnel within 20 m from the bifurcation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomechanics and Geo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.21203/rs.3....
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomechanics and Geo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geomechanics and Geophysics for Geo-Energy and Geo-Resources
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.21203/rs.3....
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Abdel-Nasser Sharkawy;
    Abdel-Nasser Sharkawy
    ORCID
    Harvested from ORCID Public Data File

    Abdel-Nasser Sharkawy in OpenAIRE

    In this paper, the mathematical analysis of the robot effective mass is presented. The calculation of this effective mass and its ellipsoid are included. The relationship between the robot effective mass and the external force (collision) affecting the robot end-effector is investigated. The effective mass is analyzed using different robot configurations and different end-effector positions. This analysis is conducted using 2-DOF and 3-DOF planar robots and executed using MATLAB. The results from this analysis prove that the robot effective mass depends on the its configurations and end-effector position. Effective mass can thus be considered as one of the criteria in optimizing robot kinematics and configuration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineering Transact...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.24423/en...
    Article . 2021
    License: CC BY SA
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineering Transact...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.24423/en...
      Article . 2021
      License: CC BY SA
      Data sources: Datacite
      addClaim
  • Authors: Runjia Sun; Hainan Zhu; Yutian Liu;

    The objective of power system restoration is to re store the load as soon as possible, while the successful start-up of generator is the precondition of load recovery and the emphasis of power system restoration. In this paper, both the generator start-up sequence and the restoration path are considered. A preference multi-objective model which considers the difference of the objectives' importance is proposed. To get the most preferred alternatives, a non-r-dominance sorting genetic algorithm II (r-NSGA-II) is used to solve the model. The reference point determination method and solution set scale controlling method are proposed to improve the algorithm, which makes the solution set scale controllable and the preference to be better expressed. Simulation results show that the proposed method has practical value when solving the generator start-up problem for network reconfiguration.

    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jingwen Yuan;
    Jingwen Yuan
    ORCID
    Harvested from ORCID Public Data File

    Jingwen Yuan in OpenAIRE
    Hualan Wang; Yannan Fang;

    A GIS-based method is proposed to identify critical links in urban road networks. This study utilizes a geographic information system (GIS) to evaluate the distribution of road infrastructure, road density, and network accessibility at the micro, meso, and macro levels. At the micro level, GIS is used to assess the distribution of public facilities along the roads. At the meso level, a city’s road density distribution is evaluated. At the macro level, a spatial barrier model and a transportation network model are constructed to assess the network accessibility. An inverse distance weighting method is employed to interpolate the accessibility. Furthermore, a network topology is established, and the entropy method is utilized to evaluate the sections comprehensively. The sections are ranked based on the evaluation results to identify the critical links in the urban road network. The road-network data and points of interest (POI) data from the Anning District in Lanzhou are selected for a case study, and the results indicate that the top five critical links have scores of 0.641, 0.571, 0.570, 0.519, and 0.508, respectively. Considering the three indicators enhances the accuracy of critical section identification, demonstrating the effectiveness of the proposed method. Visualizing each indicator using GIS 10.7 provides a new approach to identifying critical links in urban road networks and offers essential theoretical support for urban planning.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ji Wei Wen; You Hong Sun; Jian She Mao; Chen Chen;

    Oil shale is a very important alternative energy, hydraulic mining is an effective method for oil shale utilization in Jilin Province. For the Nong'an oil shale in Jilin Province, the average compressive strength of horizontal bedding is 17.14MPa, and the average compressive strength of vertical bedding is 10.90MPa. For cone straight-shaped nozzle, when the jet pressure P is 10MPa and the nozzle outlet diameter d is 1mm, striking force generated by the jet is 15.65N, it can break the oil shale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Mechanics and Materials
    Article . 2013 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Mechanics and Materials
      Article . 2013 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim
  • Authors: orcid bw Hangzhao Liu;
    Hangzhao Liu
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Hangzhao Liu in OpenAIRE
    orcid Huan Li;
    Huan Li
    ORCID
    Harvested from ORCID Public Data File

    Huan Li in OpenAIRE
    orcid bw Hanfeng Wang;
    Hanfeng Wang
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Hanfeng Wang in OpenAIRE
    orcid Ce Li;
    Ce Li
    ORCID
    Harvested from ORCID Public Data File

    Ce Li in OpenAIRE
    +2 Authors

    The present paper examines the vortex-induced vibration (VIV) of a 5:1 rectangular cylinder with a detached splitter in its near wake. The tested gap ratio between the cylinder and the splitter (g/D, where g is the gap between the cylinder rear and the splitter and D is the depth of the rectangular cylinder) ranges from 0.5 to 2.0, with an increment of 0.5. To serve as a reference case, the rectangular cylinder without the splitter is also tested under the same conditions. The test Reynolds number ranges from 32 320 to 56 507. This study delves into the vibration response, pressure distributions, and power spectral densities (PSD) of the cylinder under varying gap ratios. Based on qualitative and quantitative analyses between the cylinder and the splitter using phase average techniques, smoke-wire visualization, and numerical simulation, the different vortex shedding modes according to different gap ratios were identified. Experimental and numerical results show that the detached splitter and its gap ratio play important roles in determining the cylinder VIV properties. For g/D = 0.5, the detached splitter has a sensible mitigation on the cylinder VIV. However, as the gap ratio increases, the VIV response initially recovers to the reference case at g/D = 1.0 and subsequently enlarges at g/D = 1.5 and 2.0. The pressure distribution results showed that the detached splitter demonstrates its effects primarily through fluctuations in the pressure field rather than the mean field. In addition, at g/D = 0.5, a sensibly decayed PSD is observed, while at g/D = 1.0–2.0, an intensified PSD is detected. The underlying mechanism of the detached splitter on the VIV of the 5:1 rectangular cylinder should be attributed to the von Kármán vortex street compared to the reference case.

    Physics of Fluidsarrow_drop_down
    Physics of Fluids
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Physics of Fluidsarrow_drop_down
      Physics of Fluids
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhanping Hu;
    Zhanping Hu
    ORCID
    Harvested from ORCID Public Data File

    Zhanping Hu in OpenAIRE

    Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hamadou Tahirou Abdoulkarim; Bomboma Damigou; Bomboma Kalgora; Kwame Kwadu Amponsem; +1 Authors

    The present study measured the relative efficiency of five major commercial ports in West Africa, using three different Data Envelopment Analysis (DEA) methods, the CCR, BCC, and Windows I-C methods over the years 2005-2016. Seven input variables and one output variable were used in the model analysis. The CCR and BCC methods were used to evaluate the technical and scale efficiency while the Windows I-C method provided a comprehensive ranking of the studied ports. The results showed that the scale efficiency score of 89.53% indicated that on average the production scale of the ports had deviated from the most productive scale size (MPSS) by 10.47%. These results revealed that the source of the overall inefficiency is due to scale rather than pure technical inefficiency. Hence, in order to improve the overall efficiency, the two scaled inefficient ports of Abidjan and Cotonou should adjust their scale of operations. Then, further investigations were conducted to detect correlations between various variables used in this study. The research found that the absence of any correlation for non-significant variables and negative correlation for the significant variables throughout time resulted from the fact that these variables were not fully utilized. Meaning that they were not efficiently used to boost the container throughput on a scale basis, the research also found that a pandemic or insecurity could easily impact seaports activities with the case of the Ebola outbreak which strucked the West African region from the year 2013 to 2016, or the terrorism threats which prevailed in the region around the year 2012. Thus, for ports to stand out in the present fiercely competitive environment, ports authorities ought to analyze their operational scale to identify whether or not the production size is fitting before further port capacity expansion.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Transport...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Transportation Technologies
    Article . 2019 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Transportation Technologies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Transport...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Transportation Technologies
      Article . 2019 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Transportation Technologies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yuwei Fu; Mengsha He; Guowei Zhang; Chi Chen; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/ceidp5...
    Conference object . 2022 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/ceidp5...
      Conference object . 2022 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph