- home
- Search
- Energy Research
- Open Access
- CN
- FR
- AU
- PL
- Energy Research
- Open Access
- CN
- FR
- AU
- PL
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | EdgeStressEC| EdgeStressAuthors:Thyrring, Jakob;
Wegeberg, Susse; Blicher, Martin E.;Thyrring, Jakob
Thyrring, Jakob in OpenAIREKrause-Jensen, Dorte;
+6 AuthorsKrause-Jensen, Dorte
Krause-Jensen, Dorte in OpenAIREThyrring, Jakob;
Wegeberg, Susse; Blicher, Martin E.;Thyrring, Jakob
Thyrring, Jakob in OpenAIREKrause-Jensen, Dorte;
Krause-Jensen, Dorte
Krause-Jensen, Dorte in OpenAIREHøgslund, Signe;
Høgslund, Signe
Høgslund, Signe in OpenAIREOlesen, Birgit;
Wiktor Jr, Jozef;Olesen, Birgit
Olesen, Birgit in OpenAIREMouritsen, Kim N.;
Mouritsen, Kim N.
Mouritsen, Kim N. in OpenAIREPeck, Lloyd S.;
Peck, Lloyd S.
Peck, Lloyd S. in OpenAIRESejr, Mikael K.;
Sejr, Mikael K.
Sejr, Mikael K. in OpenAIREThe data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The University of Hong Kong Authors: Lishan Ran (9057026);This is the dataset for our research on assessing CO2 emissions from Chinese inland waters, including streams, rivers, lakes and reservoirs. The dataset includes three parts, including Part 1: Lakes and Reservoirs_1980s, Part 2: CO2 Dataset_2010s, and Part 3: Water chemistry records. Detailed information on these data can be found from the 'README' text file.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 21 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Authors:Jarvie, Scott;
Ingram, Travis; Chapple, David; Hitchmough, Rodney; +2 AuthorsJarvie, Scott
Jarvie, Scott in OpenAIREJarvie, Scott;
Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Jarvie, Scott
Jarvie, Scott in OpenAIREAlthough GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 21 Nov 2023Publisher:Harvard Dataverse Authors: Odersky, Moritz; Löffler, Max;doi: 10.7910/dvn/puu3nf
Journal of Economic Inequality, accepted
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/puu3nf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Computer Network Information Center, Chinese Academy of Sciences Authors: lei zhang (10860255);Supplementary Information is available for this paper.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11922/sciencedb.00882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors:Al-Bitar, Ahmad;
Al-Bitar, Ahmad
Al-Bitar, Ahmad in OpenAIREVeronika, Antonenko;
Veronika, Antonenko
Veronika, Antonenko in OpenAIREWheat Biomass for Kherson and Poltava regions in Ukraine The dataset contains Dry Above Ground Biomass (DAM) estimates over the Kherson and Poltava regions in Ukraine for years 2020,2021 and 2022. - Processing:The processing is done using the AgriCarbon-EOv1.5 processing chain, using the TREX processing centre at CNES France.The input remote sensing data are L2A Sentinel-2 surface reflectances provided by the MAJA processing chain based on the Copernicus Sentinel-2 L1C data.The Landcover maps are provided using ML Deep learning based on the Copernicus L2A data.The daily weather data is extracted from ERA5Land products (C3S). -Geophysical variable:Dry Above ground biomass of winter wheat in g/m2. - Extents: * DAM estimates over the Copernicus Sentinel-2 tile 36TWT cover the Kherson region.* DAM estimates over the Copernicus Sentinel-2 tile 36UVA cover the Poltava region. - Spatial resolution:10m resolution estimlates over wheat plots identified in the landcover map. - Temporal coverage:Estimates are provided at the end of the wheat cycle for cycles:* The year 2020 correspond to cycle: 2019-2020* The year 2021 corresponds to cycle : 2020-2021* The year 2022 corresponds to cycle : 2021-2022 - Projection: EPSG:32636 - File content: Each Raster file has 2 bands containing respectively: * band1: mean value of DAM in g/m2. * band2: standard deviation of DAM in g/m2. - List of maps:* Dry_aboveground_biomass_2020_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2020_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2021_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2021_T36UVA_Poltava_Ukraine.tif* Dry_aboveground_biomass_2022_T36TWT_Kherson_Ukraine.tif* Dry_aboveground_biomass_2022_T36UVA_Poltava_Ukraine.tif
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12749817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Overview The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished. Scenario The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland. Methodology The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs. Simulation setup The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day. Results The results of the aforementioned investigations have been included in the attached files, which can be described as follows: File _results_gcas.csv The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively. Files _results_scas.csv & _results_kras.csv The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively. Acknowledgment More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015 FranceAuthors: Groot, Hugo de;handle: 10568/68898
The Global Yield Gap Atlas project (GYGA - http://yieldgap.org ) has undertaken a yield gap assessment following the protocol recommended by van Ittersum et. al. (van Ittersum et. al., 2013). This datafile holds the results for rainfed rice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/68898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/68898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Alexander-Haw, Abigail;Dütschke, Elisabeth;
Dütschke, Elisabeth
Dütschke, Elisabeth in OpenAIREJanßen, Hannah;
Janßen, Hannah
Janßen, Hannah in OpenAIREPreuß, Sabine;
+3 AuthorsPreuß, Sabine
Preuß, Sabine in OpenAIREAlexander-Haw, Abigail;Dütschke, Elisabeth;
Dütschke, Elisabeth
Dütschke, Elisabeth in OpenAIREJanßen, Hannah;
Janßen, Hannah
Janßen, Hannah in OpenAIREPreuß, Sabine;
Preuß, Sabine
Preuß, Sabine in OpenAIRESchleich, Joachim;
Schleich, Joachim
Schleich, Joachim in OpenAIRETröger, Josephine;
Tschaut, Mareike;Tröger, Josephine
Tröger, Josephine in OpenAIREThis dataset and codebook correspond to the second round of survey data gathered in Denmark in 2023, within the project FULFILL - Fundamental Decarbonisation Through Sufficiency By Lifestyle Changes. As part of Work Package 3 (WP3) in the FULFILL project, we collected quantitative data from six countries: Denmark, France, Germany, Italy, Latvia, and India. The first round of the survey, consisted of recruiting a representative sample of approximately 2000 households in each country. In this second survey round, we recruit around 500 respondents from the initial survey round, ensuring representativity is maintained. This survey is very similar to the survey in the first round and includes a lot of identical items, including a quantitative assessment of the carbon footprint in the housing, mobility, and diet sectors, socio-economic factors such as age, gender, income, education, household size, life stage, and political orientation. Furthermore, the survey includes measures of quality of life, encompassing aspects such as health and well-being, environmental quality, financial security, and comfort. New for this second round, we have incorporated questions regarding the measures respondents adopted in response to the 2022 energy crisis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13764769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Authors:Ferron, Bruno;
Leizour, Stephane; Hamon, Michel; Peden, Olivier;Ferron, Bruno
Ferron, Bruno in OpenAIREdoi: 10.17882/98361
This data publication provides two datasets of turbulent kinetic energy dissipation rates sampled during the MomarSat 2022 cruise. One dataset was gathered with a deep autonomous Vertical Microstructure Profiler (VMP-6000). The second dataset was gathered with the MicroRiYo mooring as described in the reference paper (Ferron et al. 2024). The two datasets, one for each instrument, are available as tar files. Each tar file contains fourteen NetCDF files. Each NetCDF file contains the dissipation rate profile, the time (UTC) of the profile start, the geographical position (deployment of the VMP or mooring position), and the mean pressure for each dissipation rate estimate (two estimates at each pressure level from the two shear sensors). Each dissipation rate comes with a quality control matrix QC (14 x 4) that characterizes how the associated mean shear spectrum fitted the expected theoretical Nasmyth spectrum: QC( 1:10, 1 ) : Value of the 10 criteria used (see reference paper) for the dissipation rates of shear 1. QC( 1:10, 2 ): Criteria met (=1) or not met (=0) for shear 1 dissipation rates. QC(11,1): Same criteria as QC(10,1) expressed in terms of mean absolute deviation (MAD) instead of variance (see Lueck et al. 2022) (shear 1). QC(11,2): state whether criteria QC(11,1) is met (=1) or not met (=0) (shear 1). QC(12,1): Number of shear spectra averaged to compute one dissipation rate estimate (shear 1). QC(12,2): Number of accelerometer used to remove vibrations (Goodman et al. 2006; Lueck et al. 2022; Ferron et al. 2023) (shear 1) QC(13,1): MAD (shear 1) QC(13,2): unused QC(14,1): index of first used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(14,2): index of last used spectral component to compute the shear variance used in the dissipation rate estimate (shear 1). QC(:,3): same as QC(:,1) for shear 2. QC(:,4): same as QC(:,2) for shear 2. Shear data were processed following the processing flow chart of the Atomix SCOR Working Group 160 (https://wiki.app.uib.no/atomix/index.php?title=Flow_chart_for_shear_probes). References: Ferron, B., S. Leizour, M. Hamon, O. Peden, 2024: MicroRiYo : An observing system for deep repeated profiles of kinetic energy dissipation rates from shear-microstructure turbulence along a mooring line, submitted to J. Atmos. Ocean. Tech. Lueck, R. G., 2022: The Statistics of Oceanic Turbulence Measurements. Part II: Shear Spectra and a New Spectral Model. J. Atmos. Oceanic Technol., 39, 1273–1282, https://doi.org/10.1175/JTECH-D-21-0050.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/98361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu