search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2. Zero hunger
  • CN
  • US
  • Chinese

  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: SHAO Yating; WANG Juanle;

    Vegetation phenology is one of the sensitive indicators reflecting global climate change and vegetation growth. Inner Mongolia is an important ecological security barrier in the north of China, and a key area for resource development, environmental protection and ecological security in China. Studying its vegetation phenological changes can know its vegetation growth status, which is of great significance for understanding the characteristics of climate change and extreme climate events in the region. Based on the normalized differential vegetation index (NDVI) data product in MOD13Q1 product, this study use Google Earth Engine platform to process MODIS-NDVI raw data for format conversion, projection conversion and clipping, and exports NDVI long time series data from 2000 to 2021, and dynamic threshold method was used to obtain Inner Mongolia vegetation phenology data set from 2001 to 2020. The dataset includes remote sensing monitoring data of the start of growing season (SOS), the end of growing season (EOS), and the length of growing season (LOS) in Inner Mongolia from 2001 to 2019. And the spatial resolution is 250 m. It provides data support for understanding the temporal and spatial variation of vegetation phenology in Inner Mongolia and its response to climate change. Vegetation phenology is one of the sensitive indicators reflecting global climate change and vegetation growth. Inner Mongolia is an important ecological security barrier in the north of China, and a key area for resource development, environmental protection and ecological security in China. Studying its vegetation phenological changes can know its vegetation growth status, which is of great significance for understanding the characteristics of climate change and extreme climate events in the region. Based on the normalized differential vegetation index (NDVI) data product in MOD13Q1 product, this study use Google Earth Engine platform to process MODIS-NDVI raw data for format conversion, projection conversion and clipping, and exports NDVI long time series data from 2000 to 2021, and dynamic threshold method was used to obtain Inner Mongolia vegetation phenology data set from 2001 to 2020. The dataset includes remote sensing monitoring data of the start of growing season (SOS), the end of growing season (EOS), and the length of growing season (LOS) in Inner Mongolia from 2001 to 2019. And the spatial resolution is 250 m. It provides data support for understanding the temporal and spatial variation of vegetation phenology in Inner Mongolia and its response to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: SHAO Yating; WANG Juanle;

    Vegetation phenology is one of the sensitive indicators reflecting global climate change and vegetation growth. Inner Mongolia is an important ecological security barrier in the north of China, and a key area for resource development, environmental protection and ecological security in China. Studying its vegetation phenological changes can know its vegetation growth status, which is of great significance for understanding the characteristics of climate change and extreme climate events in the region. Based on the normalized differential vegetation index (NDVI) data product in MOD13Q1 product, this study use Google Earth Engine platform to process MODIS-NDVI raw data for format conversion, projection conversion and clipping, and exports NDVI long time series data from 2000 to 2021, and dynamic threshold method was used to obtain Inner Mongolia vegetation phenology data set from 2001 to 2020. The dataset includes remote sensing monitoring data of the start of growing season (SOS), the end of growing season (EOS), and the length of growing season (LOS) in Inner Mongolia from 2001 to 2019. And the spatial resolution is 250 m. It provides data support for understanding the temporal and spatial variation of vegetation phenology in Inner Mongolia and its response to climate change. Vegetation phenology is one of the sensitive indicators reflecting global climate change and vegetation growth. Inner Mongolia is an important ecological security barrier in the north of China, and a key area for resource development, environmental protection and ecological security in China. Studying its vegetation phenological changes can know its vegetation growth status, which is of great significance for understanding the characteristics of climate change and extreme climate events in the region. Based on the normalized differential vegetation index (NDVI) data product in MOD13Q1 product, this study use Google Earth Engine platform to process MODIS-NDVI raw data for format conversion, projection conversion and clipping, and exports NDVI long time series data from 2000 to 2021, and dynamic threshold method was used to obtain Inner Mongolia vegetation phenology data set from 2001 to 2020. The dataset includes remote sensing monitoring data of the start of growing season (SOS), the end of growing season (EOS), and the length of growing season (LOS) in Inner Mongolia from 2001 to 2019. And the spatial resolution is 250 m. It provides data support for understanding the temporal and spatial variation of vegetation phenology in Inner Mongolia and its response to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph