- home
- Search
Filters
Clear All- Energy Research
- 13. Climate action
- CN
- University of Cambridge
- Energy Research
- 13. Climate action
- CN
- University of Cambridge
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Huifang Li; Djavan De Clercq; Yuan Tao; Zongguo Wen; Yihan Wang;pmid: 31220732
A precise energy conservation and emission reduction (ECER) path in industrial sector contains two aspects: applying effective ECER measures and focusing on processes with significant ECER potential. However, most studies have investigated the ECER effects of an individual measure or only evaluated industrial-level ECER potential. Therefore, the objective of this study is to find a precise ECER path in China's iron and steel industry through quantitative analysis methods. First, this article adopts scenario analysis to simulate situations where different ECER measures are adopted and designs calculation methods to quantitatively evaluate the ECER effects in each scenario in 2020 and 2025. Second, through analysis of the application of ECER measures to certain processes, we calculate the ECER potential of different individual processes in the iron and steel industry. In addition, the conservation supply curve method and the quadrant method are used to measure the level of advanced technology application. The results show that: (1) for four types of ECER measures, the limitation of production output measure is most effective, contributing to 6.98% and 12.50% decreases in total industrial energy consumption and pollutant emissions in 2020 and 2025; moreover, the contribution of the adjustment of scale structure measure is comparatively low. (2) The sintering and ironmaking processes have strong ECER potential in 2020, while the steel making process also has high ECER potential in 2025. (3) 21 technologies are divided into 4 quadrants based on energy, popularity, and economic performance. In addition, we provide some suggestions for future ECER policies. In sum, this article provides an in-depth example of determining a precise ECER path in an important industry.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 10 Jun 2022 United KingdomPublisher:Elsevier BV Li, Yuanyuan; Wang, Hua; Deng, Yanqing; Liang, Dongfang; Li, Yiping; Shen, Zilin;pmid: 35660438
The water quality of Le 'an River Watershed (LRW) is crucial to the water environmental safety of Poyang Lake, especially the concentration of nitrogen and phosphorus. The effect of climate and land use change on watershed water quality has always been under the attention of local managers. More importantly, the lack of detailed studies on climate and land use impact on river water quality has prevented sustainable water security management in the LRW. Therefore, this study aimed to quantify the weight of climate and land use on nutrient loss in the LRW, respectively. We divided the historical period (1990-2020) into six scenarios and a baseline scenario. TN and TP losses in the watershed were simulated using Soil and Water Assessment Tool (SWAT), and the weight of climate and land use were quantified in overall, by period, and by region. The results showed that the weight of climate was greatly higher than land use with values around 90%. However, the weight of land use had a positive cumulative effect in a certain period, and its influence could not be neglected. The climate in all scenarios led to a reduction in nutrient loss, while land use was found to slightly increase the nutrient loss yield. In addition to, unique regional topographic features, urbanization rates, and climatic conditions could cause spatial heterogeneity in the climatic and land use weights.
Apollo arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Institution of Engineering and Technology (IET) Yupeng Yuan; Xiaoyu Wang; Liang Tong; Chengqing Yuan; Boyang Shen; Teng Long;doi: 10.1049/els2.12085
AbstractHybrid ships have recently garnered increasing attention as a promising solution for energy shortages and environmental pollution. However, changes in the navigation environment can greatly affect the energy efficiency of these vessels. Therefore, improving the energy efficiency of hybrid ships continues to be a key issue. Our study examined the energy efficiency of a diesel‐electric series hybrid ship operating on an inland river, and a method to optimise series hybrid ship energy efficiency was proposed. The energy consumption model, power demand model, and decision function with minimum fuel consumption as the evaluation criteria were established according to the ship's characteristics and hybrid system. By analysing the data collected from an actual ship, the operating conditions of the navigation environment were identified using the k‐means algorithm, and the total distance travelled by the ship was divided into several sub‐trajectories. Afterwards, the optimised speed of the ship and the optimised output power of each power source were determined using the grasshopper optimization algorithm. The ship's energy efficiency levels before and after using the energy efficiency enhancement method were compared and analysed, and the effects of this optimization method on the ship's energy efficiency in several typical voyages were analysed. Our findings demonstrated that this optimization method can distribute the output of the power source in a better way, thereby optimising the speed of the vessel and maintaining stable sailing. More importantly, the proposed method can reduce fuel consumption by 17.04%.
IET Electrical Syste... arrow_drop_down IET Electrical Systems in TransportationArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/els2.12085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IET Electrical Syste... arrow_drop_down IET Electrical Systems in TransportationArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/els2.12085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 07 May 2021 Malaysia, South Africa, United Kingdom, MalaysiaPublisher:Wiley Funded by:UKRI | Biodiversity and Ecosyste...UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsOliver S. Ashford; Oliver S. Ashford; Robert M. Ewers; Clare L. Wilkinson; Clare L. Wilkinson; Emma Garnett; Marion Pfeifer; Marion Pfeifer; Stephen R. Hardwick; Michael Boyle; Michael Boyle; Michael Boyle; Rachel Isolde Lane-Shaw; Arthur Y. C. Chung; Sarah H. Luke; Sarah H. Luke; Tom M. Fayle; Tom M. Fayle; Tom M. Fayle; Kalsum M. Yusah; Tom R. Bishop; Tom R. Bishop; Theodore A. Evans; Theodore A. Evans; Imogen C. R. Ashford; Michiel van Breugel; Edgar C. Turner; Edgar C. Turner;handle: 2263/84398 , 10044/1/86645
Abstract Logging and habitat conversion create hotter microclimates in tropical forest landscapes, representing a powerful form of localised anthropogenic climate change. It is widely believed that these emergent conditions are responsible for driving changes in communities of organisms found in modified tropical forests, although the empirical evidence base for this is lacking. Here we investigated how interactions between the physiological traits of genera and the environmental temperatures they experience lead to functional and compositional changes in communities of ants, a key organism in tropical forest ecosystems. We found that the abundance and activity of ant genera along a gradient of forest disturbance in Sabah, Malaysian Borneo, was defined by an interaction between their thermal tolerance (CTmax) and environmental temperature. In more disturbed, warmer habitats, genera with high CTmax had increased relative abundance and functional activity, and those with low CTmax had decreased relative abundance and functional activity. This interaction determined abundance changes between primary and logged forest that differed in daily maximum temperature by a modest 1.1°C, and strengthened as the change in microclimate increased with disturbance. Between habitats that differed by 5.6°C (primary forest to oil palm) and 4.5°C (logged forest to oil palm), a 1°C difference in CTmax among genera led to a 23% and 16% change in relative abundance, and a 22% and 17% difference in functional activity. CTmax was negatively correlated with body size and trophic position, with ants becoming significantly smaller and less predatory as microclimate temperatures increased. Our results provide evidence to support the widely held, but never directly tested, assumption that physiological tolerances underpin the influence of disturbance‐induced microclimate change on the abundance and function of invertebrates in tropical landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:Elsevier BV Şahincan Üçler; Sinan Küfeoğlu; Sinan Küfeoğlu; E. Büşra Öztürk; Hao Chen; Furkan Eskicioğlu;handle: 11693/77403
Abstract Daylight Saving Time is argued to be effective in saving energy. Turkey is one of the few countries that annulled the clock changes and remained in the summertime zone in 2016. This paper uses Multiple Linear Regression and Interrupted Time Series methods to study the impact of clock changes on energy consumption and load shift. We use historical energy consumption, electricity prices, and relevant atmospheric essential climate variables data in Turkey between 2012-2020. This paper shows that the Daylight Saving Time policy does not lead to a measurable amount of energy savings. Furthermore, it does not cause a noticeable continuous daily load shift throughout the year. We also claim that our findings should be applicable to those countries such as the United States, India, Japan, Australia or China and as well as continents of Africa and South America, whose latitudes are in between 42.0° north and south of the equator.
Energy Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBilkent University Institutional RepositoryArticle . 2021Data sources: Bilkent University Institutional RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBilkent University Institutional RepositoryArticle . 2021Data sources: Bilkent University Institutional RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Preprint 2018Embargo end date: 17 Sep 2018 United Kingdom, FinlandPublisher:MDPI AG Gündüz, Niyazi; Chen, Hao; Lehtonen; Matti; Küfeoǧlu, Sinan;Increasing distributed generation and intermittency, along with the increasing frequency of extreme weather events, impose a serious challenge for the electric power supply security. Understanding the costs of interruption is vital in terms of enhancing the power system infrastructure and planning the distribution grid. On the other hand, customer rights and demand response techniques are further reasons to study the worth of power reliability. In this paper, the authors make use of directional distance function and shadow pricing method for a case study from Finland. The aim is to calculate the cost of one minute of power interruption from the distribution network operator perspective. The sample consists of 78 distribution network operators from Finland with cost and network information between 2013 and 2015.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1831/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201806.0374.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1831/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201806.0374.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Ali Reza Kamali; Ali Reza Kamali; Kaiyu Xie;doi: 10.1039/c8gc02756k
Molten salt electrolytic reduction of Fe2O3 in the presence of water is proposed as a sustainable and cost-effective approach for large-scale production of iron.
Green Chemistry arrow_drop_down Green ChemistryArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8gc02756k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Chemistry arrow_drop_down Green ChemistryArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8gc02756k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 11 Aug 2020 United KingdomPublisher:Elsevier BV Yuan, Y; Wang, J; Yan, X; Shen, B; Long, T;Abstract In the face of increasingly severe energy shortage and environmental pollution, the use of new forms of energy will become an important direction for the future development of ships. A hybrid power system comprised of various types of energy, such as conventional fossil fuels, renewables, hydrogens, fuel cells and batteries, can ensure a continuous and reliable power source for ships by using different types of energy for various operating conditions. This has become an emerging solution for greener ships and attracted attention from both industry and academia. A state-of-the-art multi-energy hybrid power system for ships is introduced in this paper. The configuration and characteristics of series, parallel and series-parallel hybrid power systems are analyzed and compared. Challenges of multi-energy power system for large-scale ships such as reliability, control and efficiency are discussed, and possible solutions are proposed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 France, United Kingdom, FrancePublisher:The Royal Society Sonia Tiedt; Kate E. Jones; Kate E. Jones; Giovanni Lo Iacono; Giovanni Lo Iacono; Bernard K. Bett; David W. Redding;Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.
University of Surrey... arrow_drop_down University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/844810/Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/81469Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Surrey... arrow_drop_down University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/844810/Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/81469Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Huifang Li; Djavan De Clercq; Yuan Tao; Zongguo Wen; Yihan Wang;pmid: 31220732
A precise energy conservation and emission reduction (ECER) path in industrial sector contains two aspects: applying effective ECER measures and focusing on processes with significant ECER potential. However, most studies have investigated the ECER effects of an individual measure or only evaluated industrial-level ECER potential. Therefore, the objective of this study is to find a precise ECER path in China's iron and steel industry through quantitative analysis methods. First, this article adopts scenario analysis to simulate situations where different ECER measures are adopted and designs calculation methods to quantitatively evaluate the ECER effects in each scenario in 2020 and 2025. Second, through analysis of the application of ECER measures to certain processes, we calculate the ECER potential of different individual processes in the iron and steel industry. In addition, the conservation supply curve method and the quadrant method are used to measure the level of advanced technology application. The results show that: (1) for four types of ECER measures, the limitation of production output measure is most effective, contributing to 6.98% and 12.50% decreases in total industrial energy consumption and pollutant emissions in 2020 and 2025; moreover, the contribution of the adjustment of scale structure measure is comparatively low. (2) The sintering and ironmaking processes have strong ECER potential in 2020, while the steel making process also has high ECER potential in 2025. (3) 21 technologies are divided into 4 quadrants based on energy, popularity, and economic performance. In addition, we provide some suggestions for future ECER policies. In sum, this article provides an in-depth example of determining a precise ECER path in an important industry.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 10 Jun 2022 United KingdomPublisher:Elsevier BV Li, Yuanyuan; Wang, Hua; Deng, Yanqing; Liang, Dongfang; Li, Yiping; Shen, Zilin;pmid: 35660438
The water quality of Le 'an River Watershed (LRW) is crucial to the water environmental safety of Poyang Lake, especially the concentration of nitrogen and phosphorus. The effect of climate and land use change on watershed water quality has always been under the attention of local managers. More importantly, the lack of detailed studies on climate and land use impact on river water quality has prevented sustainable water security management in the LRW. Therefore, this study aimed to quantify the weight of climate and land use on nutrient loss in the LRW, respectively. We divided the historical period (1990-2020) into six scenarios and a baseline scenario. TN and TP losses in the watershed were simulated using Soil and Water Assessment Tool (SWAT), and the weight of climate and land use were quantified in overall, by period, and by region. The results showed that the weight of climate was greatly higher than land use with values around 90%. However, the weight of land use had a positive cumulative effect in a certain period, and its influence could not be neglected. The climate in all scenarios led to a reduction in nutrient loss, while land use was found to slightly increase the nutrient loss yield. In addition to, unique regional topographic features, urbanization rates, and climatic conditions could cause spatial heterogeneity in the climatic and land use weights.
Apollo arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Institution of Engineering and Technology (IET) Yupeng Yuan; Xiaoyu Wang; Liang Tong; Chengqing Yuan; Boyang Shen; Teng Long;doi: 10.1049/els2.12085
AbstractHybrid ships have recently garnered increasing attention as a promising solution for energy shortages and environmental pollution. However, changes in the navigation environment can greatly affect the energy efficiency of these vessels. Therefore, improving the energy efficiency of hybrid ships continues to be a key issue. Our study examined the energy efficiency of a diesel‐electric series hybrid ship operating on an inland river, and a method to optimise series hybrid ship energy efficiency was proposed. The energy consumption model, power demand model, and decision function with minimum fuel consumption as the evaluation criteria were established according to the ship's characteristics and hybrid system. By analysing the data collected from an actual ship, the operating conditions of the navigation environment were identified using the k‐means algorithm, and the total distance travelled by the ship was divided into several sub‐trajectories. Afterwards, the optimised speed of the ship and the optimised output power of each power source were determined using the grasshopper optimization algorithm. The ship's energy efficiency levels before and after using the energy efficiency enhancement method were compared and analysed, and the effects of this optimization method on the ship's energy efficiency in several typical voyages were analysed. Our findings demonstrated that this optimization method can distribute the output of the power source in a better way, thereby optimising the speed of the vessel and maintaining stable sailing. More importantly, the proposed method can reduce fuel consumption by 17.04%.
IET Electrical Syste... arrow_drop_down IET Electrical Systems in TransportationArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/els2.12085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IET Electrical Syste... arrow_drop_down IET Electrical Systems in TransportationArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/els2.12085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 07 May 2021 Malaysia, South Africa, United Kingdom, MalaysiaPublisher:Wiley Funded by:UKRI | Biodiversity and Ecosyste...UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsOliver S. Ashford; Oliver S. Ashford; Robert M. Ewers; Clare L. Wilkinson; Clare L. Wilkinson; Emma Garnett; Marion Pfeifer; Marion Pfeifer; Stephen R. Hardwick; Michael Boyle; Michael Boyle; Michael Boyle; Rachel Isolde Lane-Shaw; Arthur Y. C. Chung; Sarah H. Luke; Sarah H. Luke; Tom M. Fayle; Tom M. Fayle; Tom M. Fayle; Kalsum M. Yusah; Tom R. Bishop; Tom R. Bishop; Theodore A. Evans; Theodore A. Evans; Imogen C. R. Ashford; Michiel van Breugel; Edgar C. Turner; Edgar C. Turner;handle: 2263/84398 , 10044/1/86645
Abstract Logging and habitat conversion create hotter microclimates in tropical forest landscapes, representing a powerful form of localised anthropogenic climate change. It is widely believed that these emergent conditions are responsible for driving changes in communities of organisms found in modified tropical forests, although the empirical evidence base for this is lacking. Here we investigated how interactions between the physiological traits of genera and the environmental temperatures they experience lead to functional and compositional changes in communities of ants, a key organism in tropical forest ecosystems. We found that the abundance and activity of ant genera along a gradient of forest disturbance in Sabah, Malaysian Borneo, was defined by an interaction between their thermal tolerance (CTmax) and environmental temperature. In more disturbed, warmer habitats, genera with high CTmax had increased relative abundance and functional activity, and those with low CTmax had decreased relative abundance and functional activity. This interaction determined abundance changes between primary and logged forest that differed in daily maximum temperature by a modest 1.1°C, and strengthened as the change in microclimate increased with disturbance. Between habitats that differed by 5.6°C (primary forest to oil palm) and 4.5°C (logged forest to oil palm), a 1°C difference in CTmax among genera led to a 23% and 16% change in relative abundance, and a 22% and 17% difference in functional activity. CTmax was negatively correlated with body size and trophic position, with ants becoming significantly smaller and less predatory as microclimate temperatures increased. Our results provide evidence to support the widely held, but never directly tested, assumption that physiological tolerances underpin the influence of disturbance‐induced microclimate change on the abundance and function of invertebrates in tropical landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:Elsevier BV Şahincan Üçler; Sinan Küfeoğlu; Sinan Küfeoğlu; E. Büşra Öztürk; Hao Chen; Furkan Eskicioğlu;handle: 11693/77403
Abstract Daylight Saving Time is argued to be effective in saving energy. Turkey is one of the few countries that annulled the clock changes and remained in the summertime zone in 2016. This paper uses Multiple Linear Regression and Interrupted Time Series methods to study the impact of clock changes on energy consumption and load shift. We use historical energy consumption, electricity prices, and relevant atmospheric essential climate variables data in Turkey between 2012-2020. This paper shows that the Daylight Saving Time policy does not lead to a measurable amount of energy savings. Furthermore, it does not cause a noticeable continuous daily load shift throughout the year. We also claim that our findings should be applicable to those countries such as the United States, India, Japan, Australia or China and as well as continents of Africa and South America, whose latitudes are in between 42.0° north and south of the equator.
Energy Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBilkent University Institutional RepositoryArticle . 2021Data sources: Bilkent University Institutional RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBilkent University Institutional RepositoryArticle . 2021Data sources: Bilkent University Institutional RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Preprint 2018Embargo end date: 17 Sep 2018 United Kingdom, FinlandPublisher:MDPI AG Gündüz, Niyazi; Chen, Hao; Lehtonen; Matti; Küfeoǧlu, Sinan;Increasing distributed generation and intermittency, along with the increasing frequency of extreme weather events, impose a serious challenge for the electric power supply security. Understanding the costs of interruption is vital in terms of enhancing the power system infrastructure and planning the distribution grid. On the other hand, customer rights and demand response techniques are further reasons to study the worth of power reliability. In this paper, the authors make use of directional distance function and shadow pricing method for a case study from Finland. The aim is to calculate the cost of one minute of power interruption from the distribution network operator perspective. The sample consists of 78 distribution network operators from Finland with cost and network information between 2013 and 2015.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1831/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201806.0374.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1831/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201806.0374.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Ali Reza Kamali; Ali Reza Kamali; Kaiyu Xie;doi: 10.1039/c8gc02756k
Molten salt electrolytic reduction of Fe2O3 in the presence of water is proposed as a sustainable and cost-effective approach for large-scale production of iron.
Green Chemistry arrow_drop_down Green ChemistryArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8gc02756k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Chemistry arrow_drop_down Green ChemistryArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8gc02756k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 11 Aug 2020 United KingdomPublisher:Elsevier BV Yuan, Y; Wang, J; Yan, X; Shen, B; Long, T;Abstract In the face of increasingly severe energy shortage and environmental pollution, the use of new forms of energy will become an important direction for the future development of ships. A hybrid power system comprised of various types of energy, such as conventional fossil fuels, renewables, hydrogens, fuel cells and batteries, can ensure a continuous and reliable power source for ships by using different types of energy for various operating conditions. This has become an emerging solution for greener ships and attracted attention from both industry and academia. A state-of-the-art multi-energy hybrid power system for ships is introduced in this paper. The configuration and characteristics of series, parallel and series-parallel hybrid power systems are analyzed and compared. Challenges of multi-energy power system for large-scale ships such as reliability, control and efficiency are discussed, and possible solutions are proposed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 France, United Kingdom, FrancePublisher:The Royal Society Sonia Tiedt; Kate E. Jones; Kate E. Jones; Giovanni Lo Iacono; Giovanni Lo Iacono; Bernard K. Bett; David W. Redding;Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.
University of Surrey... arrow_drop_down University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/844810/Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/81469Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Surrey... arrow_drop_down University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/844810/Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/81469Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu