- home
- Search
- Energy Research
- 2021-2025
- 7. Clean energy
- DE
- ES
- Energy Research
- 2021-2025
- 7. Clean energy
- DE
- ES
Research data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Guan, X; Xu, B; Wu, M; Jing, T; Yang, Y; Gao, Y;handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Samanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; +1 AuthorsSamanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; Gonzalo Jiménez;Abstract AP1000® Generation III+ reactor bases its safety concept on passive systems, differently from the previous Generation II reactors. This fact has led the approximations and methodologies previously used for modeling active safety systems to be reviewed and adapted to simulate the physics of passive systems. Diverse studies about the AP1000 containment have demonstrated the difficulty to correctly model the occurring phenomenology. In this paper, an integral AP1000 3D containment GOTHIC model is presented, including the Passive Containment Cooling System (PCCS). The model includes the compartments inside and outside the metallic containment liner that influence the thermal–hydraulic behavior. The model is tested against a Large Break Loss of Coolant Accident (LBLOCA) to assess its thermal–hydraulic performance, assuming a PCS tank malfunction, what is a conservative hypothesis. The pressure and temperature evolution predicted by the 3D containment model is analyzed and compared with a single node Lumped Parameters model, allowing to evaluate some preliminary benefits of 3D modeling for containment safety analysis. The 3D containment model allows to predict the thermal evolution in each containment compartment capturing the heterogeneity of this phenomenon, with higher resolution than the lumped parameters models traditionally used in this kind of analyses. It allows to observe the thermohydraulic conditions locally at any time during the transient.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Daniel Icaza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en16104045
handle: 2117/393220
This research presents a 100% renewable energy (RE) scenario by 2050 with a high share of electric vehicles on the grid (V2G) developed in Ecuador with the support of the EnergyPLAN analysis tool. Hour-by-hour data iterations were performed to determine solutions among various features, including energy storage, V2G connections that spanned the distribution system, and long-term evaluation. The high participation in V2G connections keeps the electrical system available; meanwhile, the high proportions of variable renewable energy are the pillar of the joint electrical system. The layout of the sustainable mobility scenario and the high V2G participation maintain the balance of the electrical system during most of the day, simplifying the storage equipment requirements. Consequently, the influence of V2G systems on storage is a significant result that must be considered in the energy transition that Ecuador is developing in the long term. The stored electricity will not only serve as storage for future grid use. Additionally, the V2G batteries serve as a buffer between generation from diversified renewable sources and the end-use stage.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 4 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 SpainPublisher:Elsevier BV Authors: Bory Prevez, Henry; Vazquez Seisdedos, Luis; Martínez García, Herminio; Majanne, Yrjö;handle: 2117/385378
Micro hydro power plants (µHPP) are typically used to supply electric energy to microgrids outside the national power grids taking care of the frequency control of the isolated system. A conventional way to maintain the load balance in the system is to use thyristor switched AC-AC converters controlled dump loads. A disadvantage of the AC-AC converters is their reactive power consumption decreasing the power factor at the generator output. To avoid this problem the authors have earlier proposed two converter topologies utilizing symmetrical switching scheme resulting to zero reactive power consumption. The objective of this paper is to evaluate the frequency regulation loop performance of the dump load controlled single generator system by using the symmetrically switched converter structures. Evaluation is carried out by analyzing the performances of different converter structures in a simulator representing the operation of a Cuban µHPP “Los Gallegos”. The results showed that the frequency regulation loop performance using each proposed converter structure satisfied the Cuban standard of frequency regulation, but with the symmetrically switched structures reactive power consumption was reduced resulting to reduced losses and improved effective current delivery capacity of the generator.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ifacol.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 17 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ifacol.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Guan, X; Xu, B; Wu, M; Jing, T; Yang, Y; Gao, Y;handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Samanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; +1 AuthorsSamanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; Gonzalo Jiménez;Abstract AP1000® Generation III+ reactor bases its safety concept on passive systems, differently from the previous Generation II reactors. This fact has led the approximations and methodologies previously used for modeling active safety systems to be reviewed and adapted to simulate the physics of passive systems. Diverse studies about the AP1000 containment have demonstrated the difficulty to correctly model the occurring phenomenology. In this paper, an integral AP1000 3D containment GOTHIC model is presented, including the Passive Containment Cooling System (PCCS). The model includes the compartments inside and outside the metallic containment liner that influence the thermal–hydraulic behavior. The model is tested against a Large Break Loss of Coolant Accident (LBLOCA) to assess its thermal–hydraulic performance, assuming a PCS tank malfunction, what is a conservative hypothesis. The pressure and temperature evolution predicted by the 3D containment model is analyzed and compared with a single node Lumped Parameters model, allowing to evaluate some preliminary benefits of 3D modeling for containment safety analysis. The 3D containment model allows to predict the thermal evolution in each containment compartment capturing the heterogeneity of this phenomenon, with higher resolution than the lumped parameters models traditionally used in this kind of analyses. It allows to observe the thermohydraulic conditions locally at any time during the transient.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Daniel Icaza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en16104045
handle: 2117/393220
This research presents a 100% renewable energy (RE) scenario by 2050 with a high share of electric vehicles on the grid (V2G) developed in Ecuador with the support of the EnergyPLAN analysis tool. Hour-by-hour data iterations were performed to determine solutions among various features, including energy storage, V2G connections that spanned the distribution system, and long-term evaluation. The high participation in V2G connections keeps the electrical system available; meanwhile, the high proportions of variable renewable energy are the pillar of the joint electrical system. The layout of the sustainable mobility scenario and the high V2G participation maintain the balance of the electrical system during most of the day, simplifying the storage equipment requirements. Consequently, the influence of V2G systems on storage is a significant result that must be considered in the energy transition that Ecuador is developing in the long term. The stored electricity will not only serve as storage for future grid use. Additionally, the V2G batteries serve as a buffer between generation from diversified renewable sources and the end-use stage.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 4 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 SpainPublisher:Elsevier BV Authors: Bory Prevez, Henry; Vazquez Seisdedos, Luis; Martínez García, Herminio; Majanne, Yrjö;handle: 2117/385378
Micro hydro power plants (µHPP) are typically used to supply electric energy to microgrids outside the national power grids taking care of the frequency control of the isolated system. A conventional way to maintain the load balance in the system is to use thyristor switched AC-AC converters controlled dump loads. A disadvantage of the AC-AC converters is their reactive power consumption decreasing the power factor at the generator output. To avoid this problem the authors have earlier proposed two converter topologies utilizing symmetrical switching scheme resulting to zero reactive power consumption. The objective of this paper is to evaluate the frequency regulation loop performance of the dump load controlled single generator system by using the symmetrically switched converter structures. Evaluation is carried out by analyzing the performances of different converter structures in a simulator representing the operation of a Cuban µHPP “Los Gallegos”. The results showed that the frequency regulation loop performance using each proposed converter structure satisfied the Cuban standard of frequency regulation, but with the symmetrically switched structures reactive power consumption was reduced resulting to reduced losses and improved effective current delivery capacity of the generator.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ifacol.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 17 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ifacol.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu