- home
- Search
- Energy Research
- Closed Access
- Open Source
- 15. Life on land
- GB
- DE
- FR
- EU
- Energy Research
- Closed Access
- Open Source
- 15. Life on land
- GB
- DE
- FR
- EU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Report , Article 2009 United Kingdom, FinlandPublisher:Springer Netherlands Publicly fundedArvola, Lauri; George, Glen; Livingstone, David M.; Jarvinen, Marko; Blenckner, Thorsten; Dokulil, Martin T.; Jennings, Eleanor; Nic Aonghusa, Caitriona; Noges, Peeter; Noges, Tiina; Weyhnmeyer, Gesa A.;Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: Manfred Köhler;Building facades are under permanent environmental influences, such as sun and acid rain, which age and can ultimately destroy them. Living wall systems can protect facades and offer similar benefits to those gained from installing a green roof. A view back in history shows that vegetated facades are not new technology but can offer multiple benefits as a component of current urban design. In the 19th century, in many European and some North American cities, woody climbers were frequently used as a cover for simple facades. In Central Europe in the 1980s a growing interest in environmental issues resulted in the vision to bring nature into cities. In many German cities incentive programmes were developed, including some that supported tenant initiatives for planting and maintaining climbers in their backyards and facades. Since the 1980s, research has been conducted on issues such as the insulating effects of plants on facades, the ability of plants to mitigate dust, plants’ evaporative cooling effects, and habitat creation for urban wildlife, including birds, spiders and beetles. The aim of this paper is to review research activities on the green wall and facade technology with a focus on Germany. The potential of green facades to improve urban microclimate and buildings’ ecological footprint is high, but they have not developed a widespread presence outside of Germany because they are not as well known as green roofs and there is a lack of implementation guidelines and incentive programs in other countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11252-008-0063-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu280 citations 280 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11252-008-0063-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: David N. Thomas; Chris J. Hulatt;pmid: 20634058
Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Authors: Ludwig, Wolfgang; Dumont, Egon; Meybeck, Michel; Heussner, Serge;Rivers are important sources of freshwater and nutrients for the Mediterranean and Black Sea. We present a reconstruction of the spatial and temporal variability of these inputs since the early 1960s, based on a review of available data on water discharge, nutrient concentrations and climatic parameters. Our compilation indicates that Mediterranean rivers suffer from a significant reduction in freshwater discharge, contrary to rivers of the Black Sea, which do not have clear discharge trends. We estimate this reduction to be at least about 20% between 1960 and 2000. It mainly reflects recent climate change, and dam construction may have reduced discharge even further. A similar decrease can also be expected for the fluxes of dissolved silica (Si), strongly controlled by water discharge and potentially reduced by river damming as well. This contrasts with the fluxes of nitrogen (N) and phosphorus (P) in Mediterranean and Black Sea rivers, which were strongly enhanced by anthropogenic sources. Their total inputs to the Mediterranean Sea could have increased by a factor of >5. While N still remained at elevated levels in 2000, P only increased up to the 1980–1990s, and then rapidly dropped down to about the initial values of the 1960s. With respect to the marine primary production that can be supported by the riverine nutrient inputs, Mediterranean and the Black Sea rivers were mostly phosphorus limited during the study period. Their anthropogenic nutrient enrichment could only have had a fertilizing effect before the general decline of the P loads. When also considering Si as a limiting element, which is the case for siliceous primary producers such as diatoms, silica limitation may have become a widespread phenomenon in the Mediterranean rivers since the early 1980s. For the Black Sea rivers, this already started the late 1960s. Gross primary production sustained by rivers (PPR) represents only less than 2% of the gross production (PP) in the Mediterranean, and less than 5% in the Black Sea. Possible ecological impacts of the changing river inputs should therefore be visible only in productive coastal areas, such as the Gulf of Lions, where PPR can reach more than two thirds of PP. Reported ecosystem changes both in the Adriatic Sea and the Black Sea are concomitant with major changes in the reconstructed river inputs. Further work combining modelling and data collection is needed to test whether this may also have been the case for coastal ecosystems at other places in the Mediterranean and Black Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2009.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2009.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, AustriaPublisher:Elsevier BV Anke Uhl; Hans Jürgen Hahn; Anne Jäger; Teresa Luftensteiner; Tobias Siemensmeyer; Petra Döll; Markus Noack; Klaus Schwenk; Sven Berkhoff; Markus Weiler; Clemens Karwautz; Christian Griebler;pmid: 35635915
In many parts of the world, climate change has already caused a decline in groundwater recharge, whereas groundwater demand for drinking water production and irrigation continues to increase. In such regions, groundwater tables are steadily declining with major consequences for groundwater-surface water interactions. Predominantly gaining streams that rely on discharge of groundwater from the adjacent aquifer turn into predominantly losing streams whose water seeps into the underground. This reversal of groundwater-surface water interactions is associated with an increase of low river flows, drying of stream beds, and a switch of lotic ecosystems from perennial to intermittent, with consequences for fluvial and groundwater dependent ecosystems. Moreover, water infiltrating from rivers and streams can carry a complex mix of contaminants. Accordingly, the diversity and concentrations of compounds detected in groundwater has been increasing over the past decades. During low flow, stream and river discharge may consist mainly of treated wastewater. In losing stream systems, this contaminated water seeps into the adjoining aquifers. This threatens both ecosystems as well as drinking and irrigation water quality. Climate change is therefore severely altering landscape water balances, with groundwater-surface water-interactions having reached a tipping point in many cases. Current model projections harbor huge uncertainties and scientific evidence for these tipping points remains very limited. In particular, quantitative data on groundwater-surface water-interactions are scarce both on the local and the catchment scale. The result is poor public or political awareness, and appropriate management measures await implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Berthe, Sophie C.F.; Derocles, Stéphane A.P.; Lunt, David H.; Kimball, Bruce A.; +1 AuthorsBerthe, Sophie C.F.; Derocles, Stéphane A.P.; Lunt, David H.; Kimball, Bruce A.; Evans, Darren M.;Abstract Simulated climate-warming experiments have provided important insights into the response of terrestrial ecosystems, but few have examined the impacts on agricultural insects, particularly those associated with the ecosystem service of biological pest control. Within a spring-sown wheat crop, we artificially increased temperature by 2 °C and precipitation by 10% in a short-term (April to August 2013) replicated open-field experiment and examined the impacts on coleopteran (mainly Carabidae) diversity and ‘activity-densities’. Diversity indices decreased as a result of warming but were not affected by extra precipitation. We found a significant increase in activity-densities of the four most trapped species due to warming, which was responsible for observed changes in diversity. However, Staphylinidae beetles were negatively affected by the warming treatments while other, less common species were not affected. We provide the first experimental evidence of climate-driven impacts on an important farmland insect community. We discuss the implications of our results in the context of biological control and top-down effects across trophic levels.
Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Shu‐Yi‐Dan Zhou; Zhiyang Lie; Xujun Liu; Yong‐Guan Zhu; Josep Peñuelas; Roy Neilson; Xiaoxuan Su; Zhanfeng Liu; Guowei Chu; Ze Meng; Junhua Yan; Juxiu Liu;doi: 10.1111/gcb.16541
pmid: 36448266
AbstractClimate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co‐occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lekhendra Tripathee; Pengfei Chen; Arnico K. Panday; Hewen Niu; Yulan Zhang; Zhenming Ji; Xin Wan; Chaoliu Li; Maheswar Rupakheti; Qianggong Zhang; Chaman Gul; Gang Li; Shichang Kang; Zhiyuan Cong; Junming Guo;pmid: 31302402
Carbonaceous aerosols (CAs) scatter and absorb incident solar radiation in the atmosphere, thereby influencing the regional climate and hydrological cycle, particularly in the Third Pole (TP). Here, we present the characteristics of CAs at 19 observation stations from the Atmospheric Pollution and Cryospheric Change network to obtain a deep understanding of pollutant status in the TP. The organic carbon (OC) and elemental carbon (EC) concentrations decreased noticeably inwards from outside to inland of the TP, consistent with their emission load and also affected by transport process and meteorological condition. Urban areas, such as Kathmandu, Karachi, and Mardan, exhibited extremely high OC and EC concentrations, with low and high values occurring in the monsoon and non-monsoon seasons, respectively. However, remote regions inland the TP (e.g., Nam Co and Ngari) demonstrated much lower OC and EC concentrations. Different seasonal variations were observed between the southern and northern parts of the TP, suggesting differences in the patterns of pollutant sources and in distance from the sources between the two regions. In addition to the influence of long-range transported pollutants from the Indo-Gangetic Plain (IGP), the TP was affected by local emissions (e.g., biomass burning). The OC/EC ratio also suggested that biomass burning was prevalent in the center TP, whereas the marginal sites (e.g., Jomsom, Dhunche, and Laohugou) were affected by fossil fuel combustion from the up-wind regions. The mass absorption cross-section of EC (MACEC) at 632 nm ranged from 6.56 to 14.7 m2 g-1, with an increasing trend from outside to inland of the TP. Urban areas had low MACEC values because such regions were mainly affected by local fresh emissions. In addition, large amount of brown carbon can decrease the MACEC values in cities of South Asia. Remote sites had high MACEC values because of the coating enhancement of aerosols. Influenced by emission, transport process, and weather condition, the CA concentrations and MACEC presented decreasing and increasing trends, respectively, from outside to inland of the TP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Report , Article 2009 United Kingdom, FinlandPublisher:Springer Netherlands Publicly fundedArvola, Lauri; George, Glen; Livingstone, David M.; Jarvinen, Marko; Blenckner, Thorsten; Dokulil, Martin T.; Jennings, Eleanor; Nic Aonghusa, Caitriona; Noges, Peeter; Noges, Tiina; Weyhnmeyer, Gesa A.;Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: Manfred Köhler;Building facades are under permanent environmental influences, such as sun and acid rain, which age and can ultimately destroy them. Living wall systems can protect facades and offer similar benefits to those gained from installing a green roof. A view back in history shows that vegetated facades are not new technology but can offer multiple benefits as a component of current urban design. In the 19th century, in many European and some North American cities, woody climbers were frequently used as a cover for simple facades. In Central Europe in the 1980s a growing interest in environmental issues resulted in the vision to bring nature into cities. In many German cities incentive programmes were developed, including some that supported tenant initiatives for planting and maintaining climbers in their backyards and facades. Since the 1980s, research has been conducted on issues such as the insulating effects of plants on facades, the ability of plants to mitigate dust, plants’ evaporative cooling effects, and habitat creation for urban wildlife, including birds, spiders and beetles. The aim of this paper is to review research activities on the green wall and facade technology with a focus on Germany. The potential of green facades to improve urban microclimate and buildings’ ecological footprint is high, but they have not developed a widespread presence outside of Germany because they are not as well known as green roofs and there is a lack of implementation guidelines and incentive programs in other countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11252-008-0063-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu280 citations 280 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11252-008-0063-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: David N. Thomas; Chris J. Hulatt;pmid: 20634058
Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Authors: Ludwig, Wolfgang; Dumont, Egon; Meybeck, Michel; Heussner, Serge;Rivers are important sources of freshwater and nutrients for the Mediterranean and Black Sea. We present a reconstruction of the spatial and temporal variability of these inputs since the early 1960s, based on a review of available data on water discharge, nutrient concentrations and climatic parameters. Our compilation indicates that Mediterranean rivers suffer from a significant reduction in freshwater discharge, contrary to rivers of the Black Sea, which do not have clear discharge trends. We estimate this reduction to be at least about 20% between 1960 and 2000. It mainly reflects recent climate change, and dam construction may have reduced discharge even further. A similar decrease can also be expected for the fluxes of dissolved silica (Si), strongly controlled by water discharge and potentially reduced by river damming as well. This contrasts with the fluxes of nitrogen (N) and phosphorus (P) in Mediterranean and Black Sea rivers, which were strongly enhanced by anthropogenic sources. Their total inputs to the Mediterranean Sea could have increased by a factor of >5. While N still remained at elevated levels in 2000, P only increased up to the 1980–1990s, and then rapidly dropped down to about the initial values of the 1960s. With respect to the marine primary production that can be supported by the riverine nutrient inputs, Mediterranean and the Black Sea rivers were mostly phosphorus limited during the study period. Their anthropogenic nutrient enrichment could only have had a fertilizing effect before the general decline of the P loads. When also considering Si as a limiting element, which is the case for siliceous primary producers such as diatoms, silica limitation may have become a widespread phenomenon in the Mediterranean rivers since the early 1980s. For the Black Sea rivers, this already started the late 1960s. Gross primary production sustained by rivers (PPR) represents only less than 2% of the gross production (PP) in the Mediterranean, and less than 5% in the Black Sea. Possible ecological impacts of the changing river inputs should therefore be visible only in productive coastal areas, such as the Gulf of Lions, where PPR can reach more than two thirds of PP. Reported ecosystem changes both in the Adriatic Sea and the Black Sea are concomitant with major changes in the reconstructed river inputs. Further work combining modelling and data collection is needed to test whether this may also have been the case for coastal ecosystems at other places in the Mediterranean and Black Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2009.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2009.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, AustriaPublisher:Elsevier BV Anke Uhl; Hans Jürgen Hahn; Anne Jäger; Teresa Luftensteiner; Tobias Siemensmeyer; Petra Döll; Markus Noack; Klaus Schwenk; Sven Berkhoff; Markus Weiler; Clemens Karwautz; Christian Griebler;pmid: 35635915
In many parts of the world, climate change has already caused a decline in groundwater recharge, whereas groundwater demand for drinking water production and irrigation continues to increase. In such regions, groundwater tables are steadily declining with major consequences for groundwater-surface water interactions. Predominantly gaining streams that rely on discharge of groundwater from the adjacent aquifer turn into predominantly losing streams whose water seeps into the underground. This reversal of groundwater-surface water interactions is associated with an increase of low river flows, drying of stream beds, and a switch of lotic ecosystems from perennial to intermittent, with consequences for fluvial and groundwater dependent ecosystems. Moreover, water infiltrating from rivers and streams can carry a complex mix of contaminants. Accordingly, the diversity and concentrations of compounds detected in groundwater has been increasing over the past decades. During low flow, stream and river discharge may consist mainly of treated wastewater. In losing stream systems, this contaminated water seeps into the adjoining aquifers. This threatens both ecosystems as well as drinking and irrigation water quality. Climate change is therefore severely altering landscape water balances, with groundwater-surface water-interactions having reached a tipping point in many cases. Current model projections harbor huge uncertainties and scientific evidence for these tipping points remains very limited. In particular, quantitative data on groundwater-surface water-interactions are scarce both on the local and the catchment scale. The result is poor public or political awareness, and appropriate management measures await implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Berthe, Sophie C.F.; Derocles, Stéphane A.P.; Lunt, David H.; Kimball, Bruce A.; +1 AuthorsBerthe, Sophie C.F.; Derocles, Stéphane A.P.; Lunt, David H.; Kimball, Bruce A.; Evans, Darren M.;Abstract Simulated climate-warming experiments have provided important insights into the response of terrestrial ecosystems, but few have examined the impacts on agricultural insects, particularly those associated with the ecosystem service of biological pest control. Within a spring-sown wheat crop, we artificially increased temperature by 2 °C and precipitation by 10% in a short-term (April to August 2013) replicated open-field experiment and examined the impacts on coleopteran (mainly Carabidae) diversity and ‘activity-densities’. Diversity indices decreased as a result of warming but were not affected by extra precipitation. We found a significant increase in activity-densities of the four most trapped species due to warming, which was responsible for observed changes in diversity. However, Staphylinidae beetles were negatively affected by the warming treatments while other, less common species were not affected. We provide the first experimental evidence of climate-driven impacts on an important farmland insect community. We discuss the implications of our results in the context of biological control and top-down effects across trophic levels.
Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Shu‐Yi‐Dan Zhou; Zhiyang Lie; Xujun Liu; Yong‐Guan Zhu; Josep Peñuelas; Roy Neilson; Xiaoxuan Su; Zhanfeng Liu; Guowei Chu; Ze Meng; Junhua Yan; Juxiu Liu;doi: 10.1111/gcb.16541
pmid: 36448266
AbstractClimate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co‐occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lekhendra Tripathee; Pengfei Chen; Arnico K. Panday; Hewen Niu; Yulan Zhang; Zhenming Ji; Xin Wan; Chaoliu Li; Maheswar Rupakheti; Qianggong Zhang; Chaman Gul; Gang Li; Shichang Kang; Zhiyuan Cong; Junming Guo;pmid: 31302402
Carbonaceous aerosols (CAs) scatter and absorb incident solar radiation in the atmosphere, thereby influencing the regional climate and hydrological cycle, particularly in the Third Pole (TP). Here, we present the characteristics of CAs at 19 observation stations from the Atmospheric Pollution and Cryospheric Change network to obtain a deep understanding of pollutant status in the TP. The organic carbon (OC) and elemental carbon (EC) concentrations decreased noticeably inwards from outside to inland of the TP, consistent with their emission load and also affected by transport process and meteorological condition. Urban areas, such as Kathmandu, Karachi, and Mardan, exhibited extremely high OC and EC concentrations, with low and high values occurring in the monsoon and non-monsoon seasons, respectively. However, remote regions inland the TP (e.g., Nam Co and Ngari) demonstrated much lower OC and EC concentrations. Different seasonal variations were observed between the southern and northern parts of the TP, suggesting differences in the patterns of pollutant sources and in distance from the sources between the two regions. In addition to the influence of long-range transported pollutants from the Indo-Gangetic Plain (IGP), the TP was affected by local emissions (e.g., biomass burning). The OC/EC ratio also suggested that biomass burning was prevalent in the center TP, whereas the marginal sites (e.g., Jomsom, Dhunche, and Laohugou) were affected by fossil fuel combustion from the up-wind regions. The mass absorption cross-section of EC (MACEC) at 632 nm ranged from 6.56 to 14.7 m2 g-1, with an increasing trend from outside to inland of the TP. Urban areas had low MACEC values because such regions were mainly affected by local fresh emissions. In addition, large amount of brown carbon can decrease the MACEC values in cities of South Asia. Remote sites had high MACEC values because of the coating enhancement of aerosols. Influenced by emission, transport process, and weather condition, the CA concentrations and MACEC presented decreasing and increasing trends, respectively, from outside to inland of the TP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu