- home
- Search
- Energy Research
- GB
- DE
- Energies
- Energy Research
- GB
- DE
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Martin Zapf; Hermann Pengg; Christian Weindl;doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 China (People's Republic of)Publisher:MDPI AG Jie Xu; Shiyan Chang; Zhenhong Yuan; Yang Jiang; Shuna Liu; Weizhen Li; Longlong Ma;doi: 10.3390/en81212399
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV) model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF) ranging from 86 US dollar per metric ton (USD/t) to 110 (USD/t), while that of woody pellet fuel (WPF) varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryAuthors: Shaobo Liu; Kang He; Xiaofeng Pan; Yangyang Hu;doi: 10.3390/en16104142
With the continuous development of intelligent transportation technologies, new ways of energy usage in transportation continue to emerge, which puts forward new requirements for the planning and design of energy systems. However, comprehensive analyses on the characteristics of transportation energy systems and the development trend of energy usage patterns brought by intelligent technologies have rarely been carried out so far. This paper explores this subject by reviewing the recent development and utilization of intelligent technologies in the transportation system and its impacts on energy usage. This review is carried out from three aspects, covering the representative intelligent transportation and energy technologies on vehicles, infrastructures and systems. The scope is limited within road, railway and water transport domains, with a focus on the recent developments in China as a representative. In terms of vehicles, the development trend of the power systems for new energy vehicles, the characteristics of energy usages in electric vehicles and the effects on energy saving and emission reduction are summarized. In terms of infrastructures, new technologies on smart road, smart port, intelligent railway energy system and the usage of clear energy on electric grid for transportation are reviewed, with the consideration of their potential influences on energy usages and the energy consumption characteristics of typical facilities also being analyzed. As for the transportation system, this review has focused on intelligent and connected transportation systems, train control and autonomous systems, and intelligent shipping system, with the emphasis on the energy saving and emission reduction effects of applying these intelligent technologies. The overall development trend of the transportation energy system is then analyzed based on the above materials, in particular, the future energy usage patterns in transportation system are given and the major challenges and obstacles approaching the future scenarios are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Authors: Salman Siddiqui; Mark Barrett; John Macadam;doi: 10.3390/en14144078
The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Netherlands, United KingdomPublisher:MDPI AG Rocio de la Torre; Bhakti S. Onggo; Canan G. Corlu; Maria Nogal; Angel A. Juan;doi: 10.3390/en14041138
handle: 10609/147605
The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 89 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:MDPI AG Michael Crilly; Chandra Mouli Vemury; Richard Humphrey; Sergio Rodriguez; Tracey Crosbie; Karen Johnson; Alexander Wilson; Oliver Heidrich;doi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:MDPI AG Authors: Gordon Fru; Dominique Thévenin; Gábor Janiga;doi: 10.3390/en4060878
Direct Numerical Simulations (DNS) have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent conditions (with integral Reynolds numbers up to 4513) have been accessed. The effect of turbulence on the physical properties of the flame, in particular its consumption speed Sc, which is an interesting measure of the turbulent flame speed ST has been investigated. Local quenching events are increasingly observed for highly turbulent conditions, particularly for lean mixtures. The obtained results qualitatively confirm the expected trend regarding correlations between u′/SL and the consumption speed: Sc first increases, roughly linearly, with u′/SL (low turbulence zone), then levels off (bending zone) before decreasing again (quenching limit) for too intense turbulence. For a fixed value of u′/SL, Sc/SL varies with the mixture equivalence ratio, showing that additional parameters should probably enter phenomenological expressions relating these two quantities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4060878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4060878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FinlandPublisher:MDPI AG Girgibo, Nebiyu; Mäkiranta, Anne; Lü, Xiaoshu; Hiltunen; Erkki;doi: 10.3390/en15020435
Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime.
CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Energy Networks ..., UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic...UKRI| Supergen Energy Networks hub 2018 ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy ForecastingAuthors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 28 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Funded by:UKRI | Development of Innovative...UKRI| Development of Innovative Off-Grid Energy Storage for Sub-Saharan Africa using portable and affordable Na-ion Battery SystemAuthors: Alireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; +1 AuthorsAlireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; Nduka Nnamdi Ekere;doi: 10.3390/en16186525
handle: 2436/625344
Achieving the global electricity demand and meeting the United Nations sustainable development target on reliable and sustainable energy supply by 2050 are crucial. Portable energy storage (PES) units, powered by solid-state battery cells, can offer a sustainable and cost-effective solution for regions with limited power-grid access. However, operating in high-dust and high-temperature environments presents challenges that require effective thermal management solutions. This paper is a comprehensive review of thermal management systems for PES units, with a specific focus on addressing the challenge of overheating in airtight designs. The review of various active and passive cooling systems is conducted through extensive study of the relevant literature, which is significant in providing insights into the operation, performance parameters, and design options for different cooling system technologies. The findings from this review show heat pipe (HP) technologies as key cooling-system solutions for airtight PES units. Specifically, loop and oscillating HPs, as well as the vapour chamber, offer desirable features such as compactness, low cost, and high thermal conductivity that make them superior to other alternatives for the cooling systems in PES. The insights and knowledge generated via this review will help facilitate the design and development of innovative, efficient, and reliable PES units, thereby contributing to the advancement of off-grid renewable energy applications and enabling sustainable power solutions worldwide. Furthermore, an appropriate design of PES units can help in reducing capital and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Martin Zapf; Hermann Pengg; Christian Weindl;doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 China (People's Republic of)Publisher:MDPI AG Jie Xu; Shiyan Chang; Zhenhong Yuan; Yang Jiang; Shuna Liu; Weizhen Li; Longlong Ma;doi: 10.3390/en81212399
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV) model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF) ranging from 86 US dollar per metric ton (USD/t) to 110 (USD/t), while that of woody pellet fuel (WPF) varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryAuthors: Shaobo Liu; Kang He; Xiaofeng Pan; Yangyang Hu;doi: 10.3390/en16104142
With the continuous development of intelligent transportation technologies, new ways of energy usage in transportation continue to emerge, which puts forward new requirements for the planning and design of energy systems. However, comprehensive analyses on the characteristics of transportation energy systems and the development trend of energy usage patterns brought by intelligent technologies have rarely been carried out so far. This paper explores this subject by reviewing the recent development and utilization of intelligent technologies in the transportation system and its impacts on energy usage. This review is carried out from three aspects, covering the representative intelligent transportation and energy technologies on vehicles, infrastructures and systems. The scope is limited within road, railway and water transport domains, with a focus on the recent developments in China as a representative. In terms of vehicles, the development trend of the power systems for new energy vehicles, the characteristics of energy usages in electric vehicles and the effects on energy saving and emission reduction are summarized. In terms of infrastructures, new technologies on smart road, smart port, intelligent railway energy system and the usage of clear energy on electric grid for transportation are reviewed, with the consideration of their potential influences on energy usages and the energy consumption characteristics of typical facilities also being analyzed. As for the transportation system, this review has focused on intelligent and connected transportation systems, train control and autonomous systems, and intelligent shipping system, with the emphasis on the energy saving and emission reduction effects of applying these intelligent technologies. The overall development trend of the transportation energy system is then analyzed based on the above materials, in particular, the future energy usage patterns in transportation system are given and the major challenges and obstacles approaching the future scenarios are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Authors: Salman Siddiqui; Mark Barrett; John Macadam;doi: 10.3390/en14144078
The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Netherlands, United KingdomPublisher:MDPI AG Rocio de la Torre; Bhakti S. Onggo; Canan G. Corlu; Maria Nogal; Angel A. Juan;doi: 10.3390/en14041138
handle: 10609/147605
The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 89 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:MDPI AG Michael Crilly; Chandra Mouli Vemury; Richard Humphrey; Sergio Rodriguez; Tracey Crosbie; Karen Johnson; Alexander Wilson; Oliver Heidrich;doi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:MDPI AG Authors: Gordon Fru; Dominique Thévenin; Gábor Janiga;doi: 10.3390/en4060878
Direct Numerical Simulations (DNS) have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent conditions (with integral Reynolds numbers up to 4513) have been accessed. The effect of turbulence on the physical properties of the flame, in particular its consumption speed Sc, which is an interesting measure of the turbulent flame speed ST has been investigated. Local quenching events are increasingly observed for highly turbulent conditions, particularly for lean mixtures. The obtained results qualitatively confirm the expected trend regarding correlations between u′/SL and the consumption speed: Sc first increases, roughly linearly, with u′/SL (low turbulence zone), then levels off (bending zone) before decreasing again (quenching limit) for too intense turbulence. For a fixed value of u′/SL, Sc/SL varies with the mixture equivalence ratio, showing that additional parameters should probably enter phenomenological expressions relating these two quantities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4060878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4060878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FinlandPublisher:MDPI AG Girgibo, Nebiyu; Mäkiranta, Anne; Lü, Xiaoshu; Hiltunen; Erkki;doi: 10.3390/en15020435
Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime.
CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Energy Networks ..., UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic...UKRI| Supergen Energy Networks hub 2018 ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy ForecastingAuthors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 28 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Funded by:UKRI | Development of Innovative...UKRI| Development of Innovative Off-Grid Energy Storage for Sub-Saharan Africa using portable and affordable Na-ion Battery SystemAuthors: Alireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; +1 AuthorsAlireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; Nduka Nnamdi Ekere;doi: 10.3390/en16186525
handle: 2436/625344
Achieving the global electricity demand and meeting the United Nations sustainable development target on reliable and sustainable energy supply by 2050 are crucial. Portable energy storage (PES) units, powered by solid-state battery cells, can offer a sustainable and cost-effective solution for regions with limited power-grid access. However, operating in high-dust and high-temperature environments presents challenges that require effective thermal management solutions. This paper is a comprehensive review of thermal management systems for PES units, with a specific focus on addressing the challenge of overheating in airtight designs. The review of various active and passive cooling systems is conducted through extensive study of the relevant literature, which is significant in providing insights into the operation, performance parameters, and design options for different cooling system technologies. The findings from this review show heat pipe (HP) technologies as key cooling-system solutions for airtight PES units. Specifically, loop and oscillating HPs, as well as the vapour chamber, offer desirable features such as compactness, low cost, and high thermal conductivity that make them superior to other alternatives for the cooling systems in PES. The insights and knowledge generated via this review will help facilitate the design and development of innovative, efficient, and reliable PES units, thereby contributing to the advancement of off-grid renewable energy applications and enabling sustainable power solutions worldwide. Furthermore, an appropriate design of PES units can help in reducing capital and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu