- home
- Search
- Energy Research
- 2016-2025
- DE
- PL
- UA
- Research Repository of Catalonia
- Energy Research
- 2016-2025
- DE
- PL
- UA
- Research Repository of Catalonia
description Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Josep Peñuelas; Josep Germain; Enrique Álvarez; Enric Aparicio; Pere Arús; Corina Basnou; Cèsar Blanché; Núria Bonada; Puri Canals; Marco Capodiferro; Xavier Carceller; Alexandre Casademunt; Joan Casals; Pere Casals; Francesc Casañas; Jordi Catalán; Joan Checa; Pedro J. Cordero; Joaquim Corominas; Adolf de Sostoa; Josep-Maria Espelta Morral; Marta Estrada; Ramon Folch; Teresa Franquesa; Carla Garcia-Lozano; Mercè Garí; Anna Maria Geli; Óscar González-Guerrero; Javier Gordillo; Joaquim Gosálbez; Joan O. Grimalt; Anna Guàrdia; Rosó Isern; Jordi Jordana; Eva Junqué; Josep Lascurain; Jordi Lleonart; Gustavo A. Llorente; Francisco Lloret; Josep Lloret; Josep Maria Mallarach; Javier Martín-Vide; Rosa Maria Medir; Yolanda Melero; Josep Montasell; Albert Montori; Antoni Munné; Oriol Nel·lo; Santiago Palazón; Marina Palmero; Margarita Parés; Joan Pino; Josep Pintó; Llorenç Planagumà; Xavier Pons; Narcís Prat; Carme Puig; Ignasi Puig; Pere Puigdomènech; Eudald Pujol-Buxó; Núria Roca; Jofre Rodrigo; José Domingo Rodríguez-Teijeiro; Francesc Xavier Roig-Munar; Joan Romanyà; Pere Rovira; Llorenç Sàez; Maria Teresa Sauras-Yera; David Serrat; Joan Simó; Jordi Soler; Jaume Terradas; Ramon Vallejo; Paloma Vicente; Joan Manuel Vilaplana; Dolors Vinyoles;doi: 10.3390/land10020144
handle: 10261/239705 , 2117/353319
This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today’s problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country’s natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 277visibility views 277 download downloads 454 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Dídac Jorda-Capdevila; David Gampe; Verena Huber García; Ralf Ludwig; Sergi Sabater; Laura Vergoñós; Vicenç Acuña;pmid: 30266055
Global change is severely impacting the biosphere that, through ecosystem services, sustains human well-being. Such impacts are expected to increase unless mitigation management actions are implemented. Despite the call from the scientific and political arenas for their implementation, few studies assess the effectiveness of actions on freshwater-related services. Here, by modeling water provisioning, water purification and erosion control under current and future conditions, we assess future trends of service provision with and without mitigation policies. In particular, two different storylines combine multiple climate, land use/land cover and agricultural management scenarios, and represent a pro-efficiency business as usual (myopic storyline) and a future that considers social and environmental sustainability (sustainable storyline). The mentioned services are modeled for the horizon 2050 and in three South European river basins: Ebro, Adige and Sava, which encompass the wide socio-environmental diversity of the region. Our results indicate that Mediterranean basins (Ebro) are extremely vulnerable to global change respect Alpine (Adige) or Continental (Sava) basins, as the Ebro might experience a decrease in water availability up to 40%, whereas the decrease is of only 2-4% in the Adige or negligible in the Sava. However, Mediterranean basins are also more sensitive to the implementation of mitigation actions, which would compensate the drop in water provisioning. Results also indicate that the regulating services of water purification and erosion control will gain more relevance in the future, as both services increased between 4 and 20% in both global change scenarios as a result of the expansion of agricultural and urban areas. Overall, the impact of global change is diverse among services and across river basins in Southern Europe, with the Mediterranean basins as the most vulnerable and the Continental as the least. The implementation of mitigation actions can compensate the impact and therefore deserves full political attention.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: E..., NSF | CNH-L: Dynamic Impacts of...NSF| Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems ,NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsWilliam R. L. Anderegg; Adam Wolf; Adriana Arango-Velez; Brendan Choat; Daniel J. Chmura; Steven Jansen; Thomas Kolb; Shan Li; Frederick Meinzer; Pilar Pita; Víctor Resco de Dios; John S. Sperry; Brett T. Wolfe; Stephen Pacala;Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Florian Stuhlenmiller; Daniel Clos; Stephan Rinderknecht; Philipp Beckerle; Josep M. Font-Llagunes;handle: 2117/127806
Elastic actuators feature increased energy efficiency and improved human-robot interaction compared to directly driven concepts for active orthoses and prostheses. Structure and parameters of the elastic actuation system are often designed via a model-based minimization of energy consumption based on gait data gained from healthy individuals. However, natural motion exhibits variability among individuals and may not consider requirements of persons using assistive devices. A parametric study is performed examining the impact of varying gait characteristics on the energy consumption and constraints of an optimized (clutchable) series elastic actuator of the knee joint. Furthermore, friction parameters are varied to analyze the impact on actuator constraints. Results of the parametric study indicate increased energy consumption for a slower cadence compared to the healthy gait data for both systems. The clutchable series elastic actuator is less impacted by constraints than the series elastic actuator. The utilized models are evaluated experimentally at a test bench, indicating good accordance to the measured energy consumption. The results highlight the interrelation of friction and gait parameters with energy consumption and actuator constraints and indicate that the optimization procedure for the actuator design requires detailed models of component efficiency as well as subject-specific gait characteristics.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMechanism and Machine TheoryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmachtheory.2018.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 133visibility views 133 download downloads 408 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMechanism and Machine TheoryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmachtheory.2018.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Solomone Fifita; Ilham Talab; Hugo Lucas; Hugo Lucas; Cornelia Marschel; Luisa F. Cabeza;The Pacific Small Island Developing States (SIDS) are among the most vulnerable to the impacts of climate change. Besides, they are some of the most dependent on imported petroleum products in the world, the use of renewable energy (RE) can help minimize the economic risk associated with the price volatility of fossil fuels. The region is increasingly adopting renewable energy (RE) targets and policies. Successful examples of RE deployment in the Pacific SIDS exist; however, many barriers persist and prevent the use of the region’s RE resources in a larger scale. Challenges for RE deployment in islands can be grouped in six categories: i) lack of RE data, ii) need for policy and regulatory frameworks, iii) scarcity of financial opportunities, iv) lack of human resources, v) costly infrastructure, and vi) socio-cultural impediments. Based on a survey conducted among main stakeholders in the region, within the framework of the Pacific Region Capacity Building Initiative of the International Renewable Energy Agency (IRENA) carried out in cooperation with the Secretariat of the Pacific Community (SPC), this paper identifies the specific characteristics of these challenges in the context of the Pacific SIDS, provide a qualitative assessment and identifies recommendations to overcome these challenges. The authors would like to acknowledge Mr. Dolf Gielen form the Secretariat of the International Renewable Energy Agency. The authors from the University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123). The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER).
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Spain, Italy, Spain, Germany, Spain, France, Spain, FinlandPublisher:Wiley Tatiana A. Shestakova; Jordi Voltas; Matthias Saurer; Frank Berninger; Jan Esper; Laia Andreu‐Hayles; Valérie Daux; Gerhard Helle; Markus Leuenberger; Neil J. Loader; Valérie Masson‐Delmotte; Antonio Saracino; John S. Waterhouse; Gerhard H. Schleser; Zdzisław Bednarz; Tatjana Boettger; Isabel Dorado‐Liñán; Marc Filot; David Frank; Michael Grabner; Marika Haupt; Emmi Hilasvuori; Högne Jungner; Maarit Kalela‐Brundin; Marek Krąpiec; Hamid Marah; Sławomira Pawełczyk; Anna Pazdur; Monique Pierre; Octavi Planells; Rūtilė Pukienė; Christina E. Reynolds‐Henne; Katja T. Rinne‐Garmston (Rinne); Angelo Rita; Eloni Sonninen; Michel Stiévenard; Vincent R. Switsur; Elżbieta Szychowska‐Kra̧piec; Malgorzata Szymaszek; Luigi Todaro; Kerstin Treydte; Adomas Vitas; Martin Weigl; Rupert Wimmer; Emilia Gutiérrez;doi: 10.1111/geb.12933
handle: 11563/137461
AbstractAimThe aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming.LocationEurope and North Africa (30‒70° N, 10° W‒35° E).Time period1901‒2003.Major taxa studiedTemperate and Euro‐Siberian trees.MethodsWe characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci).ResultsWe find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental).Main conclusionsAt the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 26 Mar 2020 Spain, Spain, United Kingdom, France, Netherlands, Switzerland, Germany, Portugal, Denmark, PortugalPublisher:Copernicus GmbH Funded by:UKRI | UK Status, Change and Pro..., NWO | EFFECT Exploiting Filtere..., EC | ECLAIREUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NWO| EFFECT Exploiting Filtered FEedback in Controlling Tunable lasers ,EC| ECLAIREC. R. Flechard; A. Ibrom; U. M. Skiba; W. de Vries; M. van Oijen; D. R. Cameron; N. B. Dise; J. F. J. Korhonen; J. F. J. Korhonen; N. Buchmann; A. Legout; D. Simpson; D. Simpson; M. J. Sanz; M. Aubinet; D. Loustau; L. Montagnani; L. Montagnani; J. Neirynck; I. A. Janssens; M. Pihlatie; M. Pihlatie; R. Kiese; J. Siemens; A.-J. Francez; J. Augustin; A. Varlagin; J. Olejnik; J. Olejnik; R. Juszczak; M. Aurela; D. Berveiller; B. H. Chojnicki; U. Dämmgen; N. Delpierre; V. Djuricic; J. Drewer; E. Dufrêne; W. Eugster; Y. Fauvel; D. Fowler; A. Frumau; A. Granier; P. Gross; Y. Hamon; C. Helfter; A. Hensen; L. Horváth; B. Kitzler; B. Kruijt; W. L. Kutsch; R. Lobo-do-Vale; A. Lohila; A. Lohila; B. Longdoz; M. V. Marek; G. Matteucci; M. Mitosinkova; V. Moreaux; V. Moreaux; A. Neftel; J.-M. Ourcival; K. Pilegaard; G. Pita; F. Sanz; J. K. Schjoerring; M.-T. Sebastià; M.-T. Sebastià; Y. S. Tang; H. Uggerud; M. Urbaniak; N. van Dijk; T. Vesala; T. Vesala; S. Vidic; C. Vincke; T. Weidinger; S. Zechmeister-Boltenstern; K. Butterbach-Bahl; E. Nemitz; M. A. Sutton;Abstract. The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC∕dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g C m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g N m−2 yr−1 and from −4 to 361 g C m−2 yr−1 at Ndep rates of 0.1 to 3.1 g N m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27 % (range 6 %–54 %) of Ndep at sites with Ndep < 1 g N m−2 yr−1 versus 65 % (range 35 %–85 %) for Ndep > 3 g N m−2 yr−1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g N m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP ∕ GPP ratio). At elevated Ndep levels (> 2.5 g N m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC∕dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02541780/documentData sources: Hyper Article en LigneInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-1583-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 75 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02541780/documentData sources: Hyper Article en LigneInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-1583-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:EC | RENEWIT, EC | ASCETIC, EC | EUROSERVEREC| RENEWIT ,EC| ASCETIC ,EC| EUROSERVERAuthors: Gregory Katsaros; Pascal Stichler; Josep Subirats; Jordi Guitart;handle: 2117/82539
The massive development of the cloud marketplace is leading to an increase in the number of the Data Centers (DCs) globally and eventually to an increase of the CO22 related footprint. The calculation of the impact of Virtual Machines (VMs) on the environment is a challenging task, not only due to the technical difficulties but also due to the lack of information from the energy providers. The ecological efficiency of a system captures the relationship between the performance of the system with its environmental footprint. In this paper we present a methodology for the estimation and prediction of the ecological efficiency of VMs in private cloud infrastructures. We specifically focus on the information management starting from the energy resources in a region, the energy consumption and the performance of the resources and finally the calculation of ecological efficiency of a VM. To this end, we have designed and implemented a framework through which the ecological efficiency of a running VM can be assessed and the ecological efficiency of a VM to be deployed can be forecasted. The presented framework is being evaluated through several private cloud scenarios with VM deployments in hosts located in Germany. Peer Reviewed
Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCFuture Generation Computer SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2015.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 111visibility views 111 download downloads 334 Powered bymore_vert Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCFuture Generation Computer SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2015.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Spain, Spain, Spain, France, SpainPublisher:American Physical Society (APS) Funded by:EC | ANDESEC| ANDESWright, T.; Guerrero, C.; Billowes, J.; Cano-Ott, D.; Mendoza, E.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M.B.; Ganesan, S.; García, A.R.; Giubrone, G.; Gonçalves, I.F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Hernández-Prieto, A.; Jenkins, D.G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L.S.; Lerendegui-Marco, J.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Tallaj, Amélie; Roman, F.; Rubbia, C.; Ryan, J.A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J.L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M.J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Žugec, P.;handle: 2117/113320
The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) 10-4 atoms/barn areal density 238-U sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238-U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.96.064601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.96.064601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United Kingdom, Spain, Spain, Spain, SpainPublisher:Elsevier BV Jurgita Malinauskaite; Evina Katsou; A. Viasopoulos; Fouad Al-Mansour; Nik Spencer; Lorna Anguilano; Rebecca Jayne Thorne; Joan Colón; Renata Krzyżyńska; Hussam Jouhara; I. C. López; P. Stanchev; Dina Czajczyńska; Dina Czajczyńska; Sergio Ponsá; Pawel Rostkowski;This paper proposes an overarching review of national municipal waste management systems and waste- to-energy as an important part of it in the context of circular economy in the selected countries in Europe. The growth of population and rising standards of living means that the consumption of goods and energy is increasing. On the one hand, consumption leads to an increase in the generation of waste. On the other hand, the correlation between increased wealth and increased energy consumption is very strong as well. Given that the average heating value of municipal solid waste (MSW) is approximately 10 MJ/kg, it seems logical to use waste as a source of energy. Traditionally, waste-to-energy (WtE) has been associated with incineration. Yet, the term is much broader, embracing various waste treatment processes generating energy (for instance, in the form of electricity and/or heat or producing a waste- derived fuel). Turning waste into energy can be one key to a circular economy enabling the value of products, materials, and resources to be maintained on the market for as long as possible, minimising waste and resource use. As the circular economy is at the top of the EU agenda, all Member States of the EU (including the EEA countries) should move away from the old-fashioned disposal of waste to a more intelligent waste treatment encompassing the circular economy approach in their waste policies. Therefore, the article examines how these EU policies are implemented in practice. Given that WtE traditionally is attached to the MSW management and organisation, the focus of this article is twofold. Firstly, it aims to identify the different practices of municipal waste management employed in selected countries and their approaches in embracing the circular economy and, secondly, the extent to which WtE technologies play any role in this context. The following countries, Estonia, Greece, Italy, Latvia, Lithuania, Norway, Poland, Slovenia, Spain, and the UK were chosen to depict a broad European context.
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTABrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.11.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 635 citations 635 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTABrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.11.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Josep Peñuelas; Josep Germain; Enrique Álvarez; Enric Aparicio; Pere Arús; Corina Basnou; Cèsar Blanché; Núria Bonada; Puri Canals; Marco Capodiferro; Xavier Carceller; Alexandre Casademunt; Joan Casals; Pere Casals; Francesc Casañas; Jordi Catalán; Joan Checa; Pedro J. Cordero; Joaquim Corominas; Adolf de Sostoa; Josep-Maria Espelta Morral; Marta Estrada; Ramon Folch; Teresa Franquesa; Carla Garcia-Lozano; Mercè Garí; Anna Maria Geli; Óscar González-Guerrero; Javier Gordillo; Joaquim Gosálbez; Joan O. Grimalt; Anna Guàrdia; Rosó Isern; Jordi Jordana; Eva Junqué; Josep Lascurain; Jordi Lleonart; Gustavo A. Llorente; Francisco Lloret; Josep Lloret; Josep Maria Mallarach; Javier Martín-Vide; Rosa Maria Medir; Yolanda Melero; Josep Montasell; Albert Montori; Antoni Munné; Oriol Nel·lo; Santiago Palazón; Marina Palmero; Margarita Parés; Joan Pino; Josep Pintó; Llorenç Planagumà; Xavier Pons; Narcís Prat; Carme Puig; Ignasi Puig; Pere Puigdomènech; Eudald Pujol-Buxó; Núria Roca; Jofre Rodrigo; José Domingo Rodríguez-Teijeiro; Francesc Xavier Roig-Munar; Joan Romanyà; Pere Rovira; Llorenç Sàez; Maria Teresa Sauras-Yera; David Serrat; Joan Simó; Jordi Soler; Jaume Terradas; Ramon Vallejo; Paloma Vicente; Joan Manuel Vilaplana; Dolors Vinyoles;doi: 10.3390/land10020144
handle: 10261/239705 , 2117/353319
This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today’s problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country’s natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 277visibility views 277 download downloads 454 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Dídac Jorda-Capdevila; David Gampe; Verena Huber García; Ralf Ludwig; Sergi Sabater; Laura Vergoñós; Vicenç Acuña;pmid: 30266055
Global change is severely impacting the biosphere that, through ecosystem services, sustains human well-being. Such impacts are expected to increase unless mitigation management actions are implemented. Despite the call from the scientific and political arenas for their implementation, few studies assess the effectiveness of actions on freshwater-related services. Here, by modeling water provisioning, water purification and erosion control under current and future conditions, we assess future trends of service provision with and without mitigation policies. In particular, two different storylines combine multiple climate, land use/land cover and agricultural management scenarios, and represent a pro-efficiency business as usual (myopic storyline) and a future that considers social and environmental sustainability (sustainable storyline). The mentioned services are modeled for the horizon 2050 and in three South European river basins: Ebro, Adige and Sava, which encompass the wide socio-environmental diversity of the region. Our results indicate that Mediterranean basins (Ebro) are extremely vulnerable to global change respect Alpine (Adige) or Continental (Sava) basins, as the Ebro might experience a decrease in water availability up to 40%, whereas the decrease is of only 2-4% in the Adige or negligible in the Sava. However, Mediterranean basins are also more sensitive to the implementation of mitigation actions, which would compensate the drop in water provisioning. Results also indicate that the regulating services of water purification and erosion control will gain more relevance in the future, as both services increased between 4 and 20% in both global change scenarios as a result of the expansion of agricultural and urban areas. Overall, the impact of global change is diverse among services and across river basins in Southern Europe, with the Mediterranean basins as the most vulnerable and the Continental as the least. The implementation of mitigation actions can compensate the impact and therefore deserves full political attention.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: E..., NSF | CNH-L: Dynamic Impacts of...NSF| Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems ,NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsWilliam R. L. Anderegg; Adam Wolf; Adriana Arango-Velez; Brendan Choat; Daniel J. Chmura; Steven Jansen; Thomas Kolb; Shan Li; Frederick Meinzer; Pilar Pita; Víctor Resco de Dios; John S. Sperry; Brett T. Wolfe; Stephen Pacala;Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Florian Stuhlenmiller; Daniel Clos; Stephan Rinderknecht; Philipp Beckerle; Josep M. Font-Llagunes;handle: 2117/127806
Elastic actuators feature increased energy efficiency and improved human-robot interaction compared to directly driven concepts for active orthoses and prostheses. Structure and parameters of the elastic actuation system are often designed via a model-based minimization of energy consumption based on gait data gained from healthy individuals. However, natural motion exhibits variability among individuals and may not consider requirements of persons using assistive devices. A parametric study is performed examining the impact of varying gait characteristics on the energy consumption and constraints of an optimized (clutchable) series elastic actuator of the knee joint. Furthermore, friction parameters are varied to analyze the impact on actuator constraints. Results of the parametric study indicate increased energy consumption for a slower cadence compared to the healthy gait data for both systems. The clutchable series elastic actuator is less impacted by constraints than the series elastic actuator. The utilized models are evaluated experimentally at a test bench, indicating good accordance to the measured energy consumption. The results highlight the interrelation of friction and gait parameters with energy consumption and actuator constraints and indicate that the optimization procedure for the actuator design requires detailed models of component efficiency as well as subject-specific gait characteristics.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMechanism and Machine TheoryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmachtheory.2018.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 133visibility views 133 download downloads 408 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMechanism and Machine TheoryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmachtheory.2018.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Solomone Fifita; Ilham Talab; Hugo Lucas; Hugo Lucas; Cornelia Marschel; Luisa F. Cabeza;The Pacific Small Island Developing States (SIDS) are among the most vulnerable to the impacts of climate change. Besides, they are some of the most dependent on imported petroleum products in the world, the use of renewable energy (RE) can help minimize the economic risk associated with the price volatility of fossil fuels. The region is increasingly adopting renewable energy (RE) targets and policies. Successful examples of RE deployment in the Pacific SIDS exist; however, many barriers persist and prevent the use of the region’s RE resources in a larger scale. Challenges for RE deployment in islands can be grouped in six categories: i) lack of RE data, ii) need for policy and regulatory frameworks, iii) scarcity of financial opportunities, iv) lack of human resources, v) costly infrastructure, and vi) socio-cultural impediments. Based on a survey conducted among main stakeholders in the region, within the framework of the Pacific Region Capacity Building Initiative of the International Renewable Energy Agency (IRENA) carried out in cooperation with the Secretariat of the Pacific Community (SPC), this paper identifies the specific characteristics of these challenges in the context of the Pacific SIDS, provide a qualitative assessment and identifies recommendations to overcome these challenges. The authors would like to acknowledge Mr. Dolf Gielen form the Secretariat of the International Renewable Energy Agency. The authors from the University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123). The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER).
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Spain, Italy, Spain, Germany, Spain, France, Spain, FinlandPublisher:Wiley Tatiana A. Shestakova; Jordi Voltas; Matthias Saurer; Frank Berninger; Jan Esper; Laia Andreu‐Hayles; Valérie Daux; Gerhard Helle; Markus Leuenberger; Neil J. Loader; Valérie Masson‐Delmotte; Antonio Saracino; John S. Waterhouse; Gerhard H. Schleser; Zdzisław Bednarz; Tatjana Boettger; Isabel Dorado‐Liñán; Marc Filot; David Frank; Michael Grabner; Marika Haupt; Emmi Hilasvuori; Högne Jungner; Maarit Kalela‐Brundin; Marek Krąpiec; Hamid Marah; Sławomira Pawełczyk; Anna Pazdur; Monique Pierre; Octavi Planells; Rūtilė Pukienė; Christina E. Reynolds‐Henne; Katja T. Rinne‐Garmston (Rinne); Angelo Rita; Eloni Sonninen; Michel Stiévenard; Vincent R. Switsur; Elżbieta Szychowska‐Kra̧piec; Malgorzata Szymaszek; Luigi Todaro; Kerstin Treydte; Adomas Vitas; Martin Weigl; Rupert Wimmer; Emilia Gutiérrez;doi: 10.1111/geb.12933
handle: 11563/137461
AbstractAimThe aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming.LocationEurope and North Africa (30‒70° N, 10° W‒35° E).Time period1901‒2003.Major taxa studiedTemperate and Euro‐Siberian trees.MethodsWe characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci).ResultsWe find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental).Main conclusionsAt the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 26 Mar 2020 Spain, Spain, United Kingdom, France, Netherlands, Switzerland, Germany, Portugal, Denmark, PortugalPublisher:Copernicus GmbH Funded by:UKRI | UK Status, Change and Pro..., NWO | EFFECT Exploiting Filtere..., EC | ECLAIREUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NWO| EFFECT Exploiting Filtered FEedback in Controlling Tunable lasers ,EC| ECLAIREC. R. Flechard; A. Ibrom; U. M. Skiba; W. de Vries; M. van Oijen; D. R. Cameron; N. B. Dise; J. F. J. Korhonen; J. F. J. Korhonen; N. Buchmann; A. Legout; D. Simpson; D. Simpson; M. J. Sanz; M. Aubinet; D. Loustau; L. Montagnani; L. Montagnani; J. Neirynck; I. A. Janssens; M. Pihlatie; M. Pihlatie; R. Kiese; J. Siemens; A.-J. Francez; J. Augustin; A. Varlagin; J. Olejnik; J. Olejnik; R. Juszczak; M. Aurela; D. Berveiller; B. H. Chojnicki; U. Dämmgen; N. Delpierre; V. Djuricic; J. Drewer; E. Dufrêne; W. Eugster; Y. Fauvel; D. Fowler; A. Frumau; A. Granier; P. Gross; Y. Hamon; C. Helfter; A. Hensen; L. Horváth; B. Kitzler; B. Kruijt; W. L. Kutsch; R. Lobo-do-Vale; A. Lohila; A. Lohila; B. Longdoz; M. V. Marek; G. Matteucci; M. Mitosinkova; V. Moreaux; V. Moreaux; A. Neftel; J.-M. Ourcival; K. Pilegaard; G. Pita; F. Sanz; J. K. Schjoerring; M.-T. Sebastià; M.-T. Sebastià; Y. S. Tang; H. Uggerud; M. Urbaniak; N. van Dijk; T. Vesala; T. Vesala; S. Vidic; C. Vincke; T. Weidinger; S. Zechmeister-Boltenstern; K. Butterbach-Bahl; E. Nemitz; M. A. Sutton;Abstract. The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC∕dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g C m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g N m−2 yr−1 and from −4 to 361 g C m−2 yr−1 at Ndep rates of 0.1 to 3.1 g N m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27 % (range 6 %–54 %) of Ndep at sites with Ndep < 1 g N m−2 yr−1 versus 65 % (range 35 %–85 %) for Ndep > 3 g N m−2 yr−1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g N m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP ∕ GPP ratio). At elevated Ndep levels (> 2.5 g N m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC∕dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02541780/documentData sources: Hyper Article en LigneInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-1583-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 75 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02541780/documentData sources: Hyper Article en LigneInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Full-Text: https://hal.inrae.fr/hal-02541780Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-1583-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:EC | RENEWIT, EC | ASCETIC, EC | EUROSERVEREC| RENEWIT ,EC| ASCETIC ,EC| EUROSERVERAuthors: Gregory Katsaros; Pascal Stichler; Josep Subirats; Jordi Guitart;handle: 2117/82539
The massive development of the cloud marketplace is leading to an increase in the number of the Data Centers (DCs) globally and eventually to an increase of the CO22 related footprint. The calculation of the impact of Virtual Machines (VMs) on the environment is a challenging task, not only due to the technical difficulties but also due to the lack of information from the energy providers. The ecological efficiency of a system captures the relationship between the performance of the system with its environmental footprint. In this paper we present a methodology for the estimation and prediction of the ecological efficiency of VMs in private cloud infrastructures. We specifically focus on the information management starting from the energy resources in a region, the energy consumption and the performance of the resources and finally the calculation of ecological efficiency of a VM. To this end, we have designed and implemented a framework through which the ecological efficiency of a running VM can be assessed and the ecological efficiency of a VM to be deployed can be forecasted. The presented framework is being evaluated through several private cloud scenarios with VM deployments in hosts located in Germany. Peer Reviewed
Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCFuture Generation Computer SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2015.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 111visibility views 111 download downloads 334 Powered bymore_vert Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCFuture Generation Computer SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2015.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Spain, Spain, Spain, France, SpainPublisher:American Physical Society (APS) Funded by:EC | ANDESEC| ANDESWright, T.; Guerrero, C.; Billowes, J.; Cano-Ott, D.; Mendoza, E.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M.B.; Ganesan, S.; García, A.R.; Giubrone, G.; Gonçalves, I.F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Hernández-Prieto, A.; Jenkins, D.G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L.S.; Lerendegui-Marco, J.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Tallaj, Amélie; Roman, F.; Rubbia, C.; Ryan, J.A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J.L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M.J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Žugec, P.;handle: 2117/113320
The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) 10-4 atoms/barn areal density 238-U sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238-U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.96.064601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.96.064601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United Kingdom, Spain, Spain, Spain, SpainPublisher:Elsevier BV Jurgita Malinauskaite; Evina Katsou; A. Viasopoulos; Fouad Al-Mansour; Nik Spencer; Lorna Anguilano; Rebecca Jayne Thorne; Joan Colón; Renata Krzyżyńska; Hussam Jouhara; I. C. López; P. Stanchev; Dina Czajczyńska; Dina Czajczyńska; Sergio Ponsá; Pawel Rostkowski;This paper proposes an overarching review of national municipal waste management systems and waste- to-energy as an important part of it in the context of circular economy in the selected countries in Europe. The growth of population and rising standards of living means that the consumption of goods and energy is increasing. On the one hand, consumption leads to an increase in the generation of waste. On the other hand, the correlation between increased wealth and increased energy consumption is very strong as well. Given that the average heating value of municipal solid waste (MSW) is approximately 10 MJ/kg, it seems logical to use waste as a source of energy. Traditionally, waste-to-energy (WtE) has been associated with incineration. Yet, the term is much broader, embracing various waste treatment processes generating energy (for instance, in the form of electricity and/or heat or producing a waste- derived fuel). Turning waste into energy can be one key to a circular economy enabling the value of products, materials, and resources to be maintained on the market for as long as possible, minimising waste and resource use. As the circular economy is at the top of the EU agenda, all Member States of the EU (including the EEA countries) should move away from the old-fashioned disposal of waste to a more intelligent waste treatment encompassing the circular economy approach in their waste policies. Therefore, the article examines how these EU policies are implemented in practice. Given that WtE traditionally is attached to the MSW management and organisation, the focus of this article is twofold. Firstly, it aims to identify the different practices of municipal waste management employed in selected countries and their approaches in embracing the circular economy and, secondly, the extent to which WtE technologies play any role in this context. The following countries, Estonia, Greece, Italy, Latvia, Lithuania, Norway, Poland, Slovenia, Spain, and the UK were chosen to depict a broad European context.
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTABrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.11.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 635 citations 635 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTABrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.11.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu