- home
- Search
- Energy Research
- 2021-2025
- 2. Zero hunger
- 3. Good health
- DE
- UA
- Energy Research
- 2021-2025
- 2. Zero hunger
- 3. Good health
- DE
- UA
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: Srivastava, Amit Kumar;doi: 10.60507/fk2/es2sdc
The yield gap for maize across the Ethiopia has been estimated using crop model LINTUL5 embedded into the modeling framework SIMPLACE (Scientific Impact Assessment and Modelling Platform for Advanced Crop and Ecosystem Management. The yield gap of a crop grown in a certain location and cropping system is defined as the difference between the yield and biomass under optimum management and the average yield achieved by farmers. Yield under optimum management is labeled as potential yield (Yp) under irrigated conditions or water-limited potential yield (Yw) under rain-fed conditions.Yp is location specific because of the climate, and not dependent on soil properties assuming that the required water and nutrients are non-limiting and can be added through management. Thus, in areas without major soil constraints, Yp is the most relevant benchmark for irrigated systems. Whereas, for rain-fed crops, Yw, equivalent to water-limited potential yield, is the most relevant benchmark. Both Yp and Yw are calculated for optimum planting dates, planting density and region-specific crop variety which is critical in determining the feasible growth duration, particularly in tropical climatic conditions where two or even three crops are produced each year on the same field. Purpose: To increase food production, identifying the regions with untapped production capacity is of prime importance and can be achieved by quantitative and spatially explicit estimates of Yield gaps, thus considering the spatial variation in environment and the production system. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c2bbd5ed-fd4c-4a3f-b0b1-113a5d4f3ddf}. The yield gaps plotted in the map were calculated as the average values of 7 years (the year 2004 -2010). The unit is Megagram per hectare (Mg ha-1) which is equivalent to tons ha-1. The climate data at the national scale was made available from the National Aeronautics and Space Administration (NASA), Goddard Institute of Space Studies(https://data.giss.nasa.gov/impacts/agmipcf/agmerra/), AgMERRA.The dataset is stored at 0.25°×0.25° horizontal resolution (~25km). Soil parameter values were extracted from the soil property maps of Africa at 1 km x 1 km resolution (http://www.isric.org/data/soil-property-maps-africa-1-km). Maize yields (Mg ha-1) and fertilizer application (Nitrogen and Phosphorus) rates over seven years (2004 - 2010) at administrative zone level have been collected from the Central Statistical Agency, Ethiopia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 21 Sep 2021 SpainPublisher:Dryad Funded by:EC | Gradual_ChangeEC| Gradual_ChangeSmith, Linnea C; Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; Lochner, Alfred; Jones, Arwyn; Bastida, Felipe; Patoine, Guillaume; Reitz, Thomas; Buscot, François; Rillig, Matthias; Heintz-Buschart, Anna; Lehmann, Anika; Guerra, Carlos;handle: 10261/286145
The aim of this study was to quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types. Location: Europe Time period: 2018 Major taxa studied: Microbial community (fungi and bacteria) We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Climate and soil data were obtained from previous LUCAS surveys and online databases. Structural equation modeling (SEM) was used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass. Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands. Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in coming management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change. [Methods] Soil samples were collected during the 2018 LUCAS soil sampling campaign. Soil chemical and physical properties were measured at the Joint Research Centre in Ispra, Italy (Orgiazzi et al., 2018). Soil microbial respiration and biomass, as well as water content and water holding capacity, were measured in the Eisenhauer lab of the German Centre for Integrative Biodiversity Research. Fungi/Bacteria was measured by fatty acid analysis by Felipe Bastida at CEBAS CSIC. Climate and geographical data were harvested from various databases, which are listed in Appendix 1 (data sources) of the associated paper. For more details on the soil sampling and physical and chemical properties, see: Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140-153. https://doi.org/10.1111/ejss.12499 For more details on the measurements of soil microbial respiration and biomass, fatty acids, and water holding capacity, see the supplementary methods of the associated paper (Appendix 2). [Usage Notes] Fatty acid analysis was performed for a subset of 267 samples. Water holding capacity and associated measurements of basal respiration was analyzed in a subset of 100 samples. The samples that were not in these subsets have NA values for the columns associated with these measurements. In order to protect the precise locations of the LUCAS sampling sites, latitude and longitude values could not be given. The approximate location of each sampling site is instead described by the NUTS3 region. If you wish to replicate the structural equation modeling described in the paper, for which latitude is required, please get in touch. A description of each column is available in the associated metadata file. Deutsche Forschungsgemeinschaft, Award: FZT 118-202548816. European Research Council, Award: 694368. European Commission. Directorate-General for the Environment. Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie. Eurostat. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Maximiliane M. Herberich; Julia E. Schädle; Katja Tielbörger;pmid: 37277045
Climate change is continuously intensifying droughts. Extreme droughts are expected to reduce soil water content and thus, ecosystem functioning such as above-ground primary productivity. Nonetheless, results of experimental drought studies vary from no impact to a significant decrease in soil water content and/or productivity. We experimentally imposed extreme drought as 30 % and 50 % precipitation reductions using rainout shelters for four years in temperate grasslands and in the forest understory. We studied the concurrent impact of two intensities of extreme drought on the soil water content and above-ground primary productivity in the last experimental year (resistance). Furthermore, we observed resilience as the extent to which both variables differ from ambient conditions after the removal of the 50 % reduction. We show a systematic difference in response to extreme experimental drought between grasslands and the forest understory irrespective of the intensity of the extreme drought. Namely, extreme drought resulted in a significant decrease of the soil water content and productivity in grasslands but not in the forest understory. Interestingly, the negative impacts in the grasslands did not persist as evidenced by the fact that soil water content and productivity were similar to ambient conditions after the removal of the drought. Our results indicate that extreme drought on small spatial scales does not necessarily result in a concurrent soil water decrease in the forest understory, while this is the case for grasslands, with respective consequences for the resistance of productivity. Grasslands, however, can be resilient. Our study highlights that considering the response of the soil water content is key to understanding divergent productivity responses to extreme drought among different ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.164625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.164625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 AuthorsFiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; Lars, Hagemeier; Vanessa, Preuss; Michael, Klintschar; Johannes, Achenbach; Helge, Frieling; Mathias, Rhein;pmid: 37041103
Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.
Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Jianshuang Wu; Meng Li; Xianzhou Zhang; Sebastian Fiedler; Qingzhu Gao; Yuting Zhou; Wenfang Cao; Waseem Hassan; Mihai Ciprian Mărgărint; Paolo Tarolli; Britta Tietjen;pmid: 33378737
Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 GermanyPublisher:Elsevier BV Dominik Popowski; Karolina A. Pawłowska; Melanie Deipenbrock; Andreas Hensel; Aleksandra Kruk; Matthias F. Melzig; Jakub P. Piwowarski; Sebastian Granica;pmid: 33746003
Ethnopharmacological relevance Phaseaoli pericarpium (bean pods) is a pharmacopeial plant material traditionally used as a diuretic and antidiabetic agents. Diuretic activity of pod extracts was reported first in 1608. Since then Phaseoli pericarpium tea figures in many textbooks as medicinal plant material used by patients. Aim of the study Despite the traditional use of extracts from Phaseolium vulgaris pericarp, limited information is available on bioactivity, chemical composition, and bioavailability of such preparations. The following study aimed to investigate the phytochemical composition, the in vitro permeability of selected extract's constituents over the Caco-2 permeation system, and potential antivirulence activity against uropathogenic Escherichia coli of a hydroalcoholic Phaseoli pericarpium extract (PPX) in vitro to support its traditional use as a remedy used in urinary tract infections. Material and methods The chemical composition of the extract PPX [ethanol:water 7:3 (v/v)] investigated by using UHPLC-DAD-MSn and subsequent dereplication. The permeability of compounds present in PPX was evaluated using the Caco-2 monolayer permeation system. The influence of PPX on uropathogenic E. coli (UPEC) strain NU14 proliferation and against the bacterial adhesion to T24 epithelial cells was determined by turbidimetric assay and flow cytometry, respectively. The influence of the extract on the mitochondrial activity of T24 host cells was monitored by MTT assay. Results LC-MSn investigation and dereplication, indicated PPX extract to be dominated by a variety of flavonoids, with rutin as a major compound, and soyasaponin derivatives. Rutin, selected soyasaponins and fatty acids were shown to permeate the Caco-2 monolayer system, indicating potential bioavailability following oral intake. The extract did not influence the viability of T24 cells after 1.5h incubation at 2 mg/mL and UPEC. PPX significantly reduced the bacterial adhesion of UPEC to human bladder cells in a concentration-dependent manner (0.5–2 mg/mL). Detailed investigations by different incubation protocols indicated that PPX seems to interact with T24 cells, which subsequently leads to reduced recognition and adhesion of UPEC to the host cell membrane. Conclusions PPX is characterised by the presence of flavonoids (e.g. rutin) and saponins, from which selected compounds might be bioavailable after oral application, as indicated by the Caco-2 permeation experiments. Rutin and some saponins can be considered as potentially bioavailable after the oral intake. The concentration-dependent inhibition of bacterial adhesion of UPEC to T24 cells justifies the traditional use of Phaseoli pericarpium in the prevention and treatment of urinary tract infections.
Journal of Ethnophar... arrow_drop_down Journal of EthnopharmacologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2021License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jep.2021.114053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ethnophar... arrow_drop_down Journal of EthnopharmacologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2021License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jep.2021.114053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: Srivastava, Amit Kumar;doi: 10.60507/fk2/es2sdc
The yield gap for maize across the Ethiopia has been estimated using crop model LINTUL5 embedded into the modeling framework SIMPLACE (Scientific Impact Assessment and Modelling Platform for Advanced Crop and Ecosystem Management. The yield gap of a crop grown in a certain location and cropping system is defined as the difference between the yield and biomass under optimum management and the average yield achieved by farmers. Yield under optimum management is labeled as potential yield (Yp) under irrigated conditions or water-limited potential yield (Yw) under rain-fed conditions.Yp is location specific because of the climate, and not dependent on soil properties assuming that the required water and nutrients are non-limiting and can be added through management. Thus, in areas without major soil constraints, Yp is the most relevant benchmark for irrigated systems. Whereas, for rain-fed crops, Yw, equivalent to water-limited potential yield, is the most relevant benchmark. Both Yp and Yw are calculated for optimum planting dates, planting density and region-specific crop variety which is critical in determining the feasible growth duration, particularly in tropical climatic conditions where two or even three crops are produced each year on the same field. Purpose: To increase food production, identifying the regions with untapped production capacity is of prime importance and can be achieved by quantitative and spatially explicit estimates of Yield gaps, thus considering the spatial variation in environment and the production system. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c2bbd5ed-fd4c-4a3f-b0b1-113a5d4f3ddf}. The yield gaps plotted in the map were calculated as the average values of 7 years (the year 2004 -2010). The unit is Megagram per hectare (Mg ha-1) which is equivalent to tons ha-1. The climate data at the national scale was made available from the National Aeronautics and Space Administration (NASA), Goddard Institute of Space Studies(https://data.giss.nasa.gov/impacts/agmipcf/agmerra/), AgMERRA.The dataset is stored at 0.25°×0.25° horizontal resolution (~25km). Soil parameter values were extracted from the soil property maps of Africa at 1 km x 1 km resolution (http://www.isric.org/data/soil-property-maps-africa-1-km). Maize yields (Mg ha-1) and fertilizer application (Nitrogen and Phosphorus) rates over seven years (2004 - 2010) at administrative zone level have been collected from the Central Statistical Agency, Ethiopia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 21 Sep 2021 SpainPublisher:Dryad Funded by:EC | Gradual_ChangeEC| Gradual_ChangeSmith, Linnea C; Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; Lochner, Alfred; Jones, Arwyn; Bastida, Felipe; Patoine, Guillaume; Reitz, Thomas; Buscot, François; Rillig, Matthias; Heintz-Buschart, Anna; Lehmann, Anika; Guerra, Carlos;handle: 10261/286145
The aim of this study was to quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types. Location: Europe Time period: 2018 Major taxa studied: Microbial community (fungi and bacteria) We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Climate and soil data were obtained from previous LUCAS surveys and online databases. Structural equation modeling (SEM) was used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass. Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands. Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in coming management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change. [Methods] Soil samples were collected during the 2018 LUCAS soil sampling campaign. Soil chemical and physical properties were measured at the Joint Research Centre in Ispra, Italy (Orgiazzi et al., 2018). Soil microbial respiration and biomass, as well as water content and water holding capacity, were measured in the Eisenhauer lab of the German Centre for Integrative Biodiversity Research. Fungi/Bacteria was measured by fatty acid analysis by Felipe Bastida at CEBAS CSIC. Climate and geographical data were harvested from various databases, which are listed in Appendix 1 (data sources) of the associated paper. For more details on the soil sampling and physical and chemical properties, see: Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140-153. https://doi.org/10.1111/ejss.12499 For more details on the measurements of soil microbial respiration and biomass, fatty acids, and water holding capacity, see the supplementary methods of the associated paper (Appendix 2). [Usage Notes] Fatty acid analysis was performed for a subset of 267 samples. Water holding capacity and associated measurements of basal respiration was analyzed in a subset of 100 samples. The samples that were not in these subsets have NA values for the columns associated with these measurements. In order to protect the precise locations of the LUCAS sampling sites, latitude and longitude values could not be given. The approximate location of each sampling site is instead described by the NUTS3 region. If you wish to replicate the structural equation modeling described in the paper, for which latitude is required, please get in touch. A description of each column is available in the associated metadata file. Deutsche Forschungsgemeinschaft, Award: FZT 118-202548816. European Research Council, Award: 694368. European Commission. Directorate-General for the Environment. Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie. Eurostat. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Maximiliane M. Herberich; Julia E. Schädle; Katja Tielbörger;pmid: 37277045
Climate change is continuously intensifying droughts. Extreme droughts are expected to reduce soil water content and thus, ecosystem functioning such as above-ground primary productivity. Nonetheless, results of experimental drought studies vary from no impact to a significant decrease in soil water content and/or productivity. We experimentally imposed extreme drought as 30 % and 50 % precipitation reductions using rainout shelters for four years in temperate grasslands and in the forest understory. We studied the concurrent impact of two intensities of extreme drought on the soil water content and above-ground primary productivity in the last experimental year (resistance). Furthermore, we observed resilience as the extent to which both variables differ from ambient conditions after the removal of the 50 % reduction. We show a systematic difference in response to extreme experimental drought between grasslands and the forest understory irrespective of the intensity of the extreme drought. Namely, extreme drought resulted in a significant decrease of the soil water content and productivity in grasslands but not in the forest understory. Interestingly, the negative impacts in the grasslands did not persist as evidenced by the fact that soil water content and productivity were similar to ambient conditions after the removal of the drought. Our results indicate that extreme drought on small spatial scales does not necessarily result in a concurrent soil water decrease in the forest understory, while this is the case for grasslands, with respective consequences for the resistance of productivity. Grasslands, however, can be resilient. Our study highlights that considering the response of the soil water content is key to understanding divergent productivity responses to extreme drought among different ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.164625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.164625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 AuthorsFiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; Lars, Hagemeier; Vanessa, Preuss; Michael, Klintschar; Johannes, Achenbach; Helge, Frieling; Mathias, Rhein;pmid: 37041103
Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.
Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Jianshuang Wu; Meng Li; Xianzhou Zhang; Sebastian Fiedler; Qingzhu Gao; Yuting Zhou; Wenfang Cao; Waseem Hassan; Mihai Ciprian Mărgărint; Paolo Tarolli; Britta Tietjen;pmid: 33378737
Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 GermanyPublisher:Elsevier BV Dominik Popowski; Karolina A. Pawłowska; Melanie Deipenbrock; Andreas Hensel; Aleksandra Kruk; Matthias F. Melzig; Jakub P. Piwowarski; Sebastian Granica;pmid: 33746003
Ethnopharmacological relevance Phaseaoli pericarpium (bean pods) is a pharmacopeial plant material traditionally used as a diuretic and antidiabetic agents. Diuretic activity of pod extracts was reported first in 1608. Since then Phaseoli pericarpium tea figures in many textbooks as medicinal plant material used by patients. Aim of the study Despite the traditional use of extracts from Phaseolium vulgaris pericarp, limited information is available on bioactivity, chemical composition, and bioavailability of such preparations. The following study aimed to investigate the phytochemical composition, the in vitro permeability of selected extract's constituents over the Caco-2 permeation system, and potential antivirulence activity against uropathogenic Escherichia coli of a hydroalcoholic Phaseoli pericarpium extract (PPX) in vitro to support its traditional use as a remedy used in urinary tract infections. Material and methods The chemical composition of the extract PPX [ethanol:water 7:3 (v/v)] investigated by using UHPLC-DAD-MSn and subsequent dereplication. The permeability of compounds present in PPX was evaluated using the Caco-2 monolayer permeation system. The influence of PPX on uropathogenic E. coli (UPEC) strain NU14 proliferation and against the bacterial adhesion to T24 epithelial cells was determined by turbidimetric assay and flow cytometry, respectively. The influence of the extract on the mitochondrial activity of T24 host cells was monitored by MTT assay. Results LC-MSn investigation and dereplication, indicated PPX extract to be dominated by a variety of flavonoids, with rutin as a major compound, and soyasaponin derivatives. Rutin, selected soyasaponins and fatty acids were shown to permeate the Caco-2 monolayer system, indicating potential bioavailability following oral intake. The extract did not influence the viability of T24 cells after 1.5h incubation at 2 mg/mL and UPEC. PPX significantly reduced the bacterial adhesion of UPEC to human bladder cells in a concentration-dependent manner (0.5–2 mg/mL). Detailed investigations by different incubation protocols indicated that PPX seems to interact with T24 cells, which subsequently leads to reduced recognition and adhesion of UPEC to the host cell membrane. Conclusions PPX is characterised by the presence of flavonoids (e.g. rutin) and saponins, from which selected compounds might be bioavailable after oral application, as indicated by the Caco-2 permeation experiments. Rutin and some saponins can be considered as potentially bioavailable after the oral intake. The concentration-dependent inhibition of bacterial adhesion of UPEC to T24 cells justifies the traditional use of Phaseoli pericarpium in the prevention and treatment of urinary tract infections.
Journal of Ethnophar... arrow_drop_down Journal of EthnopharmacologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2021License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jep.2021.114053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ethnophar... arrow_drop_down Journal of EthnopharmacologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2021License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jep.2021.114053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu