- home
- Search
- Energy Research
- 14. Life underwater
- 11. Sustainability
- US
- DE
- AUS (United States)
- Energy Research
- 14. Life underwater
- 11. Sustainability
- US
- DE
- AUS (United States)
description Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Springer Science and Business Media LLC Authors: Robert B. Finkelman;doi: 10.1007/bf02784420
pmid: 10201327
Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal-burning power plants. Trace elements such as arsenic emitted from coal-burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.
Biological Trace Ele... arrow_drop_down Biological Trace Element ResearchArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02784420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Trace Ele... arrow_drop_down Biological Trace Element ResearchArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02784420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Public Library of Science (PLoS) Emma Choy; Kelly Watanabe; Branwen Williams; Robert Stone; Peter Etnoyer; Ellen Druffel; Thomas Lorenson; Mary Knaak;Massive, long-lived deep-sea red tree corals (Primnoa pacifica) form a solid, layered axis comprised of calcite and gorgonin skeleton. They are abundant on the outer continental shelf and upper slope of the Northeast Pacific, providing habitat for fish and invertebrates. Yet, their large size and arborescent morphology makes them susceptible to disturbance from fishing activities. A better understanding of their growth patterns will facilitate in-situ estimates of population age structure and biomass. Here, we evaluated relationships between ages, growth rates, gross morphological characteristics, and banding patterns in 11 colonies collected from depths of ~141–335 m off the Alaskan coast. These corals ranged in age from 12 to 80 years old. They grew faster radially (0.33–0.74 mm year-1) and axially (2.41–6.39 cm year-1) than in previously measured older colonies, suggesting that growth in P. pacifica declines slowly with age, and that basal diameter and axial height eventually plateau. However, since coral morphology correlated with age in younger colonies (< century), we developed an in-situ age estimation technique for corals from the Northeast Pacific Ocean providing a non-invasive method for evaluating coral age without removing colonies from the population. Furthermore, we determined that annual bands provided the most accurate means for determining coral age in live-collected corals, relative to radiometric dating. Taken together, this work provides insight into P. pacifica growth patterns to inform coastal managers about the demographics of this ecologically important species. With this new ability to estimate the age of red tree corals in-situ, we can readily determine the age-class structure and consequently, the maturity status of thickets, using non-invasive video survey techniques when coupled with mensuration systems such as lasers or stereo-cameras. Enhanced surveys could identify which populations are most vulnerable to disturbance from human activities, and which should be highlighted for protection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0241692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0241692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 United StatesPublisher:Elsevier BV K.A. Moser; J.S. Baron; J. Brahney; I.A. Oleksy; J.E. Saros; E.J. Hundey; S. Sadro; J. Kopáček; R. Sommaruga; M.J. Kainz; A.L. Strecker; S. Chandra; D.M. Walters; D.L. Preston; N. Michelutti; F. Lepori; S.A. Spaulding; K.R. Christianson; J.M. Melack; J.P. Smol;Abstract Mountain lakes are often situated in protected natural areas, a feature that leads to their role as sentinels of global environmental change. Despite variations in latitude, mountain lakes share many features, including their location in catchments with steep topographic gradients, cold temperatures, high incident solar and ultraviolet radiation (UVR), and prolonged ice and snow cover. These characteristics, in turn, affect mountain lake ecosystem structure, diversity, and productivity. The lakes themselves are mostly small, and up until recently, have been characterized as oligotrophic. This paper provides a review and update of the growing body of research that shows that sediments in remote mountain lakes archive regional and global environmental changes, including those linked to climate change, altered biogeochemical cycles, and changes in dust composition and deposition, atmospheric fertilization, and biological manipulations. These archives provide an important record of global environmental change that pre-dates typical monitoring windows. Paleolimnological research at strategically selected lakes has increased our knowledge of interactions among multiple stressors and their synergistic effects on lake systems. Lakes from transects across steep climate (i.e., temperature and effective moisture) gradients in mountain regions show how environmental change alters lakes in close proximity, but at differing climate starting points. Such research in particular highlights the impacts of melting glaciers on mountain lakes. The addition of new proxies, including DNA-based techniques and advanced stable isotopic analyses, provides a gateway to addressing novel research questions about global environmental change. Recent advances in remote sensing and continuous, high-frequency, limnological measurements will improve spatial and temporal resolution and help to add records to spatial gaps including tropical and southern latitudes. Mountain lake records provide a unique opportunity for global scale assessments that provide knowledge necessary to protect the Earth system.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2019.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 214 citations 214 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2019.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 14 Nov 2022 United StatesPublisher:U.S. Geological Survey Authors: David H Ward;doi: 10.5066/p9xnswes
These data are related to surveys of eelgrass beds in Norma Bay, Izembek Lagoon, Alaska. The table provides eelgrass shoot lengths and density measurements from sampling in September 1987.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9xnswes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9xnswes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Michelle M. McClure; Michelle M. McClure; Melissa A. Haltuch; Ellen Willis-Norton; +47 AuthorsMichelle M. McClure; Michelle M. McClure; Melissa A. Haltuch; Ellen Willis-Norton; David D. Huff; Elliott L. Hazen; Lisa G. Crozier; Michael G. Jacox; Michael G. Jacox; Mark W. Nelson; Kelly S. Andrews; Lewis A.K. Barnett; Lewis A.K. Barnett; Lewis A.K. Barnett; Aaron M. Berger; Sabrina Beyer; Sabrina Beyer; Joe Bizzarro; Joe Bizzarro; David Boughton; Jason M. Cope; Mark Carr; Heidi Dewar; Edward Dick; Emmanis Dorval; Jason Dunham; Vladlena Gertseva; Correigh M. Greene; Richard G. Gustafson; Owen S. Hamel; Chris J. Harvey; Mark J. Henderson; Mark J. Henderson; Chris E. Jordan; Isaac C. Kaplan; Steven T. Lindley; Nathan J. Mantua; Sean E. Matson; Melissa H. Monk; Peter Moyle; Colin Nicol; Colin Nicol; John Pohl; Ryan R. Rykaczewski; Jameal F. Samhouri; Susan Sogard; Nick Tolimieri; John Wallace; Chantel Wetzel; Steven J. Bograd; Steven J. Bograd;IntroductionUnderstanding how abundance, productivity and distribution of individual species may respond to climate change is a critical first step towards anticipating alterations in marine ecosystem structure and function, as well as developing strategies to adapt to the full range of potential changes.MethodsThis study applies the NOAA (National Oceanic and Atmospheric Administration) Fisheries Climate Vulnerability Assessment method to 64 federally-managed species in the California Current Large Marine Ecosystem to assess their vulnerability to climate change, where vulnerability is a function of a species’ exposure to environmental change and its biological sensitivity to a set of environmental conditions, which includes components of its resiliency and adaptive capacity to respond to these new conditions.ResultsOverall, two-thirds of the species were judged to have Moderate or greater vulnerability to climate change, and only one species was anticipated to have a positive response. Species classified as Highly or Very Highly vulnerable share one or more characteristics including: 1) having complex life histories that utilize a wide range of freshwater and marine habitats; 2) having habitat specialization, particularly for areas that are likely to experience increased hypoxia; 3) having long lifespans and low population growth rates; and/or 4) being of high commercial value combined with impacts from non-climate stressors such as anthropogenic habitat degradation. Species with Low or Moderate vulnerability are either habitat generalists, occupy deep-water habitats or are highly mobile and likely to shift their ranges.DiscussionAs climate-related changes intensify, this work provides key information for both scientists and managers as they address the long-term sustainability of fisheries in the region. This information can inform near-term advice for prioritizing species-level data collection and research on climate impacts, help managers to determine when and where a precautionary approach might be warranted, in harvest or other management decisions, and help identify habitats or life history stages that might be especially effective to protect or restore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1103767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1103767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Nalladurai Kaliyan; Sudhagar Mani; Kamalakanta Sahoo; Kamalakanta Sahoo; Ikenna J. Okeke; Ikenna J. Okeke;Abstract Climate change induced by greenhouse gas emissions from the extraction and use of fossil fuels has raised global concerns and needs to develop alternative and environmentally friendly transportation fuels from biomass and other organic carbon sources. In this study, a cradle to grave attributional life cycle assessment (LCA) was conducted to produce drop-in renewable diesel from biogas (via solid-state anaerobic digestion) derived from energy crop, i.e. miscanthus cultivated in strip-mined lands. The analysis included miscanthus cultivation, harvesting, and transportation to the biorefinery, conversion of the biomass to Fischer-Tropsch diesel, and combustion of the drop-in renewable diesel for a passenger vehicle. Results showed that the miscanthus derived drop-in renewable diesel could reduce greenhouse gas emissions by up to 73% when compared with that of the conventional fossil-derived diesel. Similarly, the proposed design consumes 4.91 MJ/GGE of fossil fuel compared to the conventional diesel with fossil fuel depletion of 18.98 MJ/GGE. Although the respiratory effects, smog formation, acidification, and eutrophication potentials of the miscanthus to drop-in renewable diesel process are relatively higher than the conventional process, the proposed technology still represents a sustainable liquid fuels pathway that is less dependent on fossil fuel, can substantially reduce greenhouse gas emissions, and help attain the renewable transportation fuels standard.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sarah R. Weiskopf; Madeleine A. Rubenstein; Lisa G. Crozier; Sarah Gaichas; Roger Griffis; Jessica E. Halofsky; Kimberly J.W. Hyde; Toni Lyn Morelli; Jeffrey T. Morisette; Roldan C. Muñoz; Andrew J. Pershing; David L. Peterson; Rajendra Poudel; Michelle D. Staudinger; Ariana E. Sutton-Grier; Laura Thompson; James Vose; Jake F. Weltzin; Kyle Powys Whyte;pmid: 32209235
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 540 citations 540 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Wiley Jennifer Lento; Sarah M. Laske; Isabelle Lavoie; Daniel Bogan; Robert B Brua; Stéphane Campeau; Krista Chin; Joseph M. Culp; Brianna Levenstein; Michael Power; Émilie Saulnier‐Talbot; Rebecca Shaftel; Heidi Swanson; Matthew Whitman; Christian E. Zimmerman;doi: 10.1111/fwb.13600
Abstract Climate change poses a significant threat to Arctic freshwater biodiversity, but impacts depend upon the strength of organism response to climate‐related drivers. Currently, there is insufficient knowledge about Arctic freshwater biodiversity patterns to guide assessment, prediction, and management of biodiversity change. As part of the Circumpolar Biodiversity Monitoring Program's first freshwater assessment, we evaluated diversity of diatoms, benthic macroinvertebrates, and fish in North American Arctic rivers. Alpha diversity was assessed in relation to temperature, water chemistry, bedrock geology, and glaciation history to identify important environmental correlates. Biotic composition was compared among groups to evaluate response to environmental gradients. Macroinvertebrate α‐diversity declined strongly with increasing latitude from 48°N to 82°N, whereas diatom and fish diversity peaked around 70°N without a clear latitudinal decline. Macroinvertebrate diversity was significantly positively related to air temperature. Diatom diversity was related to bedrock geology and temperature, whereas fish diversity was related to glaciation history. Fish and macroinvertebrate assemblages differed between sites in western Canada, where invertebrate composition was more variable, and Alaska, where fish composition was more variable. In sites with both diatom and macroinvertebrate data, diatom composition was distinct in Alaska, where richness was highest in former glacial refugia. Macroinvertebrate composition was distinct in lowest‐latitude eastern and high‐latitude western Canadian sites where temperature was highest. Temperature, precipitation, geology, calcium, and substrate size were important environmental correlates for diatoms and macroinvertebrates, although the relative importance of each correlate differed. Diatom taxa were most strongly associated with water chemistry, whereas benthic invertebrate composition related most strongly to precipitation and temperature. This large‐scale study provides the most substantial integration and analysis of river diatom, macroinvertebrate, and fish data from the North American Arctic to date. Findings suggest that macroinvertebrates will show the strongest response to climate‐related shifts in temperature, whereas diatoms and fish are more likely to respond to climate‐induced shifts in nutrients and hydraulic connectivity. However, significant gaps in data coverage limited our ability to reliably evaluate spatial patterns and detect change. These gaps could be reduced by improving collaborative efforts between the U.S.A. and Canada to harmonise future monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Springer Science and Business Media LLC Authors: Robert B. Finkelman;doi: 10.1007/bf02784420
pmid: 10201327
Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal-burning power plants. Trace elements such as arsenic emitted from coal-burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.
Biological Trace Ele... arrow_drop_down Biological Trace Element ResearchArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02784420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Trace Ele... arrow_drop_down Biological Trace Element ResearchArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02784420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Public Library of Science (PLoS) Emma Choy; Kelly Watanabe; Branwen Williams; Robert Stone; Peter Etnoyer; Ellen Druffel; Thomas Lorenson; Mary Knaak;Massive, long-lived deep-sea red tree corals (Primnoa pacifica) form a solid, layered axis comprised of calcite and gorgonin skeleton. They are abundant on the outer continental shelf and upper slope of the Northeast Pacific, providing habitat for fish and invertebrates. Yet, their large size and arborescent morphology makes them susceptible to disturbance from fishing activities. A better understanding of their growth patterns will facilitate in-situ estimates of population age structure and biomass. Here, we evaluated relationships between ages, growth rates, gross morphological characteristics, and banding patterns in 11 colonies collected from depths of ~141–335 m off the Alaskan coast. These corals ranged in age from 12 to 80 years old. They grew faster radially (0.33–0.74 mm year-1) and axially (2.41–6.39 cm year-1) than in previously measured older colonies, suggesting that growth in P. pacifica declines slowly with age, and that basal diameter and axial height eventually plateau. However, since coral morphology correlated with age in younger colonies (< century), we developed an in-situ age estimation technique for corals from the Northeast Pacific Ocean providing a non-invasive method for evaluating coral age without removing colonies from the population. Furthermore, we determined that annual bands provided the most accurate means for determining coral age in live-collected corals, relative to radiometric dating. Taken together, this work provides insight into P. pacifica growth patterns to inform coastal managers about the demographics of this ecologically important species. With this new ability to estimate the age of red tree corals in-situ, we can readily determine the age-class structure and consequently, the maturity status of thickets, using non-invasive video survey techniques when coupled with mensuration systems such as lasers or stereo-cameras. Enhanced surveys could identify which populations are most vulnerable to disturbance from human activities, and which should be highlighted for protection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0241692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0241692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 United StatesPublisher:Elsevier BV K.A. Moser; J.S. Baron; J. Brahney; I.A. Oleksy; J.E. Saros; E.J. Hundey; S. Sadro; J. Kopáček; R. Sommaruga; M.J. Kainz; A.L. Strecker; S. Chandra; D.M. Walters; D.L. Preston; N. Michelutti; F. Lepori; S.A. Spaulding; K.R. Christianson; J.M. Melack; J.P. Smol;Abstract Mountain lakes are often situated in protected natural areas, a feature that leads to their role as sentinels of global environmental change. Despite variations in latitude, mountain lakes share many features, including their location in catchments with steep topographic gradients, cold temperatures, high incident solar and ultraviolet radiation (UVR), and prolonged ice and snow cover. These characteristics, in turn, affect mountain lake ecosystem structure, diversity, and productivity. The lakes themselves are mostly small, and up until recently, have been characterized as oligotrophic. This paper provides a review and update of the growing body of research that shows that sediments in remote mountain lakes archive regional and global environmental changes, including those linked to climate change, altered biogeochemical cycles, and changes in dust composition and deposition, atmospheric fertilization, and biological manipulations. These archives provide an important record of global environmental change that pre-dates typical monitoring windows. Paleolimnological research at strategically selected lakes has increased our knowledge of interactions among multiple stressors and their synergistic effects on lake systems. Lakes from transects across steep climate (i.e., temperature and effective moisture) gradients in mountain regions show how environmental change alters lakes in close proximity, but at differing climate starting points. Such research in particular highlights the impacts of melting glaciers on mountain lakes. The addition of new proxies, including DNA-based techniques and advanced stable isotopic analyses, provides a gateway to addressing novel research questions about global environmental change. Recent advances in remote sensing and continuous, high-frequency, limnological measurements will improve spatial and temporal resolution and help to add records to spatial gaps including tropical and southern latitudes. Mountain lake records provide a unique opportunity for global scale assessments that provide knowledge necessary to protect the Earth system.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2019.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 214 citations 214 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2019.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 14 Nov 2022 United StatesPublisher:U.S. Geological Survey Authors: David H Ward;doi: 10.5066/p9xnswes
These data are related to surveys of eelgrass beds in Norma Bay, Izembek Lagoon, Alaska. The table provides eelgrass shoot lengths and density measurements from sampling in September 1987.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9xnswes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9xnswes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Michelle M. McClure; Michelle M. McClure; Melissa A. Haltuch; Ellen Willis-Norton; +47 AuthorsMichelle M. McClure; Michelle M. McClure; Melissa A. Haltuch; Ellen Willis-Norton; David D. Huff; Elliott L. Hazen; Lisa G. Crozier; Michael G. Jacox; Michael G. Jacox; Mark W. Nelson; Kelly S. Andrews; Lewis A.K. Barnett; Lewis A.K. Barnett; Lewis A.K. Barnett; Aaron M. Berger; Sabrina Beyer; Sabrina Beyer; Joe Bizzarro; Joe Bizzarro; David Boughton; Jason M. Cope; Mark Carr; Heidi Dewar; Edward Dick; Emmanis Dorval; Jason Dunham; Vladlena Gertseva; Correigh M. Greene; Richard G. Gustafson; Owen S. Hamel; Chris J. Harvey; Mark J. Henderson; Mark J. Henderson; Chris E. Jordan; Isaac C. Kaplan; Steven T. Lindley; Nathan J. Mantua; Sean E. Matson; Melissa H. Monk; Peter Moyle; Colin Nicol; Colin Nicol; John Pohl; Ryan R. Rykaczewski; Jameal F. Samhouri; Susan Sogard; Nick Tolimieri; John Wallace; Chantel Wetzel; Steven J. Bograd; Steven J. Bograd;IntroductionUnderstanding how abundance, productivity and distribution of individual species may respond to climate change is a critical first step towards anticipating alterations in marine ecosystem structure and function, as well as developing strategies to adapt to the full range of potential changes.MethodsThis study applies the NOAA (National Oceanic and Atmospheric Administration) Fisheries Climate Vulnerability Assessment method to 64 federally-managed species in the California Current Large Marine Ecosystem to assess their vulnerability to climate change, where vulnerability is a function of a species’ exposure to environmental change and its biological sensitivity to a set of environmental conditions, which includes components of its resiliency and adaptive capacity to respond to these new conditions.ResultsOverall, two-thirds of the species were judged to have Moderate or greater vulnerability to climate change, and only one species was anticipated to have a positive response. Species classified as Highly or Very Highly vulnerable share one or more characteristics including: 1) having complex life histories that utilize a wide range of freshwater and marine habitats; 2) having habitat specialization, particularly for areas that are likely to experience increased hypoxia; 3) having long lifespans and low population growth rates; and/or 4) being of high commercial value combined with impacts from non-climate stressors such as anthropogenic habitat degradation. Species with Low or Moderate vulnerability are either habitat generalists, occupy deep-water habitats or are highly mobile and likely to shift their ranges.DiscussionAs climate-related changes intensify, this work provides key information for both scientists and managers as they address the long-term sustainability of fisheries in the region. This information can inform near-term advice for prioritizing species-level data collection and research on climate impacts, help managers to determine when and where a precautionary approach might be warranted, in harvest or other management decisions, and help identify habitats or life history stages that might be especially effective to protect or restore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1103767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1103767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Nalladurai Kaliyan; Sudhagar Mani; Kamalakanta Sahoo; Kamalakanta Sahoo; Ikenna J. Okeke; Ikenna J. Okeke;Abstract Climate change induced by greenhouse gas emissions from the extraction and use of fossil fuels has raised global concerns and needs to develop alternative and environmentally friendly transportation fuels from biomass and other organic carbon sources. In this study, a cradle to grave attributional life cycle assessment (LCA) was conducted to produce drop-in renewable diesel from biogas (via solid-state anaerobic digestion) derived from energy crop, i.e. miscanthus cultivated in strip-mined lands. The analysis included miscanthus cultivation, harvesting, and transportation to the biorefinery, conversion of the biomass to Fischer-Tropsch diesel, and combustion of the drop-in renewable diesel for a passenger vehicle. Results showed that the miscanthus derived drop-in renewable diesel could reduce greenhouse gas emissions by up to 73% when compared with that of the conventional fossil-derived diesel. Similarly, the proposed design consumes 4.91 MJ/GGE of fossil fuel compared to the conventional diesel with fossil fuel depletion of 18.98 MJ/GGE. Although the respiratory effects, smog formation, acidification, and eutrophication potentials of the miscanthus to drop-in renewable diesel process are relatively higher than the conventional process, the proposed technology still represents a sustainable liquid fuels pathway that is less dependent on fossil fuel, can substantially reduce greenhouse gas emissions, and help attain the renewable transportation fuels standard.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sarah R. Weiskopf; Madeleine A. Rubenstein; Lisa G. Crozier; Sarah Gaichas; Roger Griffis; Jessica E. Halofsky; Kimberly J.W. Hyde; Toni Lyn Morelli; Jeffrey T. Morisette; Roldan C. Muñoz; Andrew J. Pershing; David L. Peterson; Rajendra Poudel; Michelle D. Staudinger; Ariana E. Sutton-Grier; Laura Thompson; James Vose; Jake F. Weltzin; Kyle Powys Whyte;pmid: 32209235
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 540 citations 540 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Wiley Jennifer Lento; Sarah M. Laske; Isabelle Lavoie; Daniel Bogan; Robert B Brua; Stéphane Campeau; Krista Chin; Joseph M. Culp; Brianna Levenstein; Michael Power; Émilie Saulnier‐Talbot; Rebecca Shaftel; Heidi Swanson; Matthew Whitman; Christian E. Zimmerman;doi: 10.1111/fwb.13600
Abstract Climate change poses a significant threat to Arctic freshwater biodiversity, but impacts depend upon the strength of organism response to climate‐related drivers. Currently, there is insufficient knowledge about Arctic freshwater biodiversity patterns to guide assessment, prediction, and management of biodiversity change. As part of the Circumpolar Biodiversity Monitoring Program's first freshwater assessment, we evaluated diversity of diatoms, benthic macroinvertebrates, and fish in North American Arctic rivers. Alpha diversity was assessed in relation to temperature, water chemistry, bedrock geology, and glaciation history to identify important environmental correlates. Biotic composition was compared among groups to evaluate response to environmental gradients. Macroinvertebrate α‐diversity declined strongly with increasing latitude from 48°N to 82°N, whereas diatom and fish diversity peaked around 70°N without a clear latitudinal decline. Macroinvertebrate diversity was significantly positively related to air temperature. Diatom diversity was related to bedrock geology and temperature, whereas fish diversity was related to glaciation history. Fish and macroinvertebrate assemblages differed between sites in western Canada, where invertebrate composition was more variable, and Alaska, where fish composition was more variable. In sites with both diatom and macroinvertebrate data, diatom composition was distinct in Alaska, where richness was highest in former glacial refugia. Macroinvertebrate composition was distinct in lowest‐latitude eastern and high‐latitude western Canadian sites where temperature was highest. Temperature, precipitation, geology, calcium, and substrate size were important environmental correlates for diatoms and macroinvertebrates, although the relative importance of each correlate differed. Diatom taxa were most strongly associated with water chemistry, whereas benthic invertebrate composition related most strongly to precipitation and temperature. This large‐scale study provides the most substantial integration and analysis of river diatom, macroinvertebrate, and fish data from the North American Arctic to date. Findings suggest that macroinvertebrates will show the strongest response to climate‐related shifts in temperature, whereas diatoms and fish are more likely to respond to climate‐induced shifts in nutrients and hydraulic connectivity. However, significant gaps in data coverage limited our ability to reliably evaluate spatial patterns and detect change. These gaps could be reduced by improving collaborative efforts between the U.S.A. and Canada to harmonise future monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu