- home
- Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 11. Sustainability
- 2. Zero hunger
- US
- DE
- Energy Research
- 2021-2025
- 7. Clean energy
- 11. Sustainability
- 2. Zero hunger
- US
- DE
description Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Amit U. Raysoni; Esmeralda Mendez; August Luna; Joe Collins;doi: 10.3390/su14074288
Aggregate and limestone mining in San Antonio’s Bexar and Comal counties in Texas, USA, has caused considerable health concerns as of late. Aggregate mining actions can result in localized air quality issues in any neighborhood. Furthermore, heavy truck traffic, hauling, and transportation of the mined material contribute to pollution. In this research, PM species were sampled at four locations north of the San Antonio city limits. The data were collected using a TSI Air Quality Sampler that sampled PM1, PM2.5, PM4, PM10, wind speed, wind direction, temperature, and relative humidity. Continuous data with 1 min averages were recorded during the study period from August to September 2019. The instrument was stationed at every location for a period of 7 days each. The four locations were a ranch, an open field, a residential compound, and an elementary school. PM1 and PM2.5 concentration levels were lower compared to PM10 concentrations at all four studied sites. Our results suggest that PM concentrations are primarily impacted by mining activities. PM species were highest at the residential compound due to its proximity to an active mining area, resulting in deleterious health effects for neighbors living in the vicinity of the sampled site.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:American Association for the Advancement of Science (AAAS) Funded by:NIH | Mechanisms of Sensory Mod..., NIH | The role of neural signal..., NIH | Modulation of aging throu...NIH| Mechanisms of Sensory Modulation of Aging in Drosophila ,NIH| The role of neural signaling pathways in costs of reproduction on aging ,NIH| Modulation of aging through mechanisms of nutrient demand and rewardYuan Luo; Jacob C. Johnson; Tuhin S. Chakraborty; Austin Piontkowski; Christi M. Gendron; Scott D. Pletcher;Yeast volatiles double starvation survival in Drosophila .
Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abf8896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abf8896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:MDPI AG Authors: Kaitlyn Spangler; Roslynn Brain McCann; Rafter Sass Ferguson;doi: 10.3390/su13105413
The solutions-based design framework of permaculture exhibits transformative potential, working to holistically integrate natural and human systems toward a more just society. The term can be defined and applied in a breadth of ways, contributing to both strengths and weaknesses for its capacity toward change. To explore the tension of breadth as strength and weakness, we interviewed 25 prominent permaculture teachers and practitioners across the United States (US) regarding how they define permaculture as a concept and perceive the term’s utility. We find that permaculture casts a wide net that participants grapple with in their own work. They engaged in a negotiation process of how they associate or disassociate themselves with the term, recognizing that it can be both unifying and polarizing. Further, there was noted concern of permaculture’s failure to cite and acknowledge its rootedness in Indigenous knowledge, as well as distinguish itself from Indigenous alternatives. We contextualize these findings within the resounding call for a decolonization of modern ways of living and the science of sustainability, of which permaculture can be critically part of. We conclude with recommended best practices for how to continuously (re-)define permaculture in an embodied and dynamic way to work toward these goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5413/pdfData sources: Multidisciplinary Digital Publishing InstituteUtah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5413/pdfData sources: Multidisciplinary Digital Publishing InstituteUtah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ketian Ye; Junbo Zhao; Can Huang; Nan Duan; Yingchen Zhang; Thomas E. Field;Global sensitivity analysis (GSA) of distribution system with respect to stochastic PV and load variations plays an important role in designing optimal voltage control schemes. This paper proposes a data-driven framework for GSA of distribution system. In particular, two representative surrogate modeling-based approaches are developed, including the traditional Gaussian process-based and the analysis of variance (ANOVA) kernel ones. The key idea is to develop a surrogate model that captures the hidden global relationship between voltage and real and reactive power injections from the historical data. With the surrogate model, the Sobol indices can be conveniently calculated through either the sampling-based method or the analytical method to assess the global sensitivity of voltage to variations of load and PV power injections. The sampling-based method estimates the Sobol indices using Monte Carlo simulations while the analytical method calculates them by resorting to the ANOVA expansion framework. Comparison results with other model-based GSA methods on the unbalanced three-phase IEEE 37-bus and 123-bus distribution systems show that the proposed framework can achieve much higher computational efficiency with negligible loss of accuracy. The results on a real 240-bus distribution system using actual smart meter data further validate the feasibility and scalability of the proposed framework.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3069009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3069009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Center for Energy and Env...NSF| Center for Energy and Environmental SustainabilityRaghava R. Kommalapati; Do-Eun Choe; Hongbo Du; Venkata S. V. Botlaguduru; Venkata S. V. Botlaguduru; Jesuina Chipindula;The Houston-Dallas (I-45) corridor is the busiest route among 18 traffic corridors in Texas, USA. The expected population growth and the surge in passenger mobility may result in a significant impact on the regional environment. This study uses a life cycle framework to predict and evaluate the net changes of environmental impact associated with the potential development of a high-speed rail (HSR) System along the I-45 corridor through its life cycle. The environmental impact is estimated in terms of CO2 and greenhouse gas (GHG) emissions per vehicle/passenger-kilometers traveled (V/PKT) using life cycle assessment. The analyses are performed referring to the Ecoinvent 3.4 inventory database through the phases: material extraction and processing, infrastructure construction, vehicle manufacturing, system operation, and end of life. The environmental benefit is evaluated by comparing the potential development of the HSR system with those of the existing transportation systems. The vehicle component, especially operation and maintenance of vehicles, is the primary contributor to the total global warming potential with about 93% of the life cycle GHG emissions. For the infrastructure component, 56.76% of GHG emissions result from the material extraction and processing phase (23.75 kgCO2eq/VKT). Various life cycle emissions of HSR except PM are significantly lower than for passenger cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Rebecca J. Barthelmie; Sara C. Pryor;doi: 10.3390/cli9090136
Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.
Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Amit U. Raysoni; Esmeralda Mendez; August Luna; Joe Collins;doi: 10.3390/su14074288
Aggregate and limestone mining in San Antonio’s Bexar and Comal counties in Texas, USA, has caused considerable health concerns as of late. Aggregate mining actions can result in localized air quality issues in any neighborhood. Furthermore, heavy truck traffic, hauling, and transportation of the mined material contribute to pollution. In this research, PM species were sampled at four locations north of the San Antonio city limits. The data were collected using a TSI Air Quality Sampler that sampled PM1, PM2.5, PM4, PM10, wind speed, wind direction, temperature, and relative humidity. Continuous data with 1 min averages were recorded during the study period from August to September 2019. The instrument was stationed at every location for a period of 7 days each. The four locations were a ranch, an open field, a residential compound, and an elementary school. PM1 and PM2.5 concentration levels were lower compared to PM10 concentrations at all four studied sites. Our results suggest that PM concentrations are primarily impacted by mining activities. PM species were highest at the residential compound due to its proximity to an active mining area, resulting in deleterious health effects for neighbors living in the vicinity of the sampled site.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:American Association for the Advancement of Science (AAAS) Funded by:NIH | Mechanisms of Sensory Mod..., NIH | The role of neural signal..., NIH | Modulation of aging throu...NIH| Mechanisms of Sensory Modulation of Aging in Drosophila ,NIH| The role of neural signaling pathways in costs of reproduction on aging ,NIH| Modulation of aging through mechanisms of nutrient demand and rewardYuan Luo; Jacob C. Johnson; Tuhin S. Chakraborty; Austin Piontkowski; Christi M. Gendron; Scott D. Pletcher;Yeast volatiles double starvation survival in Drosophila .
Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abf8896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abf8896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:MDPI AG Authors: Kaitlyn Spangler; Roslynn Brain McCann; Rafter Sass Ferguson;doi: 10.3390/su13105413
The solutions-based design framework of permaculture exhibits transformative potential, working to holistically integrate natural and human systems toward a more just society. The term can be defined and applied in a breadth of ways, contributing to both strengths and weaknesses for its capacity toward change. To explore the tension of breadth as strength and weakness, we interviewed 25 prominent permaculture teachers and practitioners across the United States (US) regarding how they define permaculture as a concept and perceive the term’s utility. We find that permaculture casts a wide net that participants grapple with in their own work. They engaged in a negotiation process of how they associate or disassociate themselves with the term, recognizing that it can be both unifying and polarizing. Further, there was noted concern of permaculture’s failure to cite and acknowledge its rootedness in Indigenous knowledge, as well as distinguish itself from Indigenous alternatives. We contextualize these findings within the resounding call for a decolonization of modern ways of living and the science of sustainability, of which permaculture can be critically part of. We conclude with recommended best practices for how to continuously (re-)define permaculture in an embodied and dynamic way to work toward these goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5413/pdfData sources: Multidisciplinary Digital Publishing InstituteUtah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5413/pdfData sources: Multidisciplinary Digital Publishing InstituteUtah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ketian Ye; Junbo Zhao; Can Huang; Nan Duan; Yingchen Zhang; Thomas E. Field;Global sensitivity analysis (GSA) of distribution system with respect to stochastic PV and load variations plays an important role in designing optimal voltage control schemes. This paper proposes a data-driven framework for GSA of distribution system. In particular, two representative surrogate modeling-based approaches are developed, including the traditional Gaussian process-based and the analysis of variance (ANOVA) kernel ones. The key idea is to develop a surrogate model that captures the hidden global relationship between voltage and real and reactive power injections from the historical data. With the surrogate model, the Sobol indices can be conveniently calculated through either the sampling-based method or the analytical method to assess the global sensitivity of voltage to variations of load and PV power injections. The sampling-based method estimates the Sobol indices using Monte Carlo simulations while the analytical method calculates them by resorting to the ANOVA expansion framework. Comparison results with other model-based GSA methods on the unbalanced three-phase IEEE 37-bus and 123-bus distribution systems show that the proposed framework can achieve much higher computational efficiency with negligible loss of accuracy. The results on a real 240-bus distribution system using actual smart meter data further validate the feasibility and scalability of the proposed framework.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3069009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3069009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Center for Energy and Env...NSF| Center for Energy and Environmental SustainabilityRaghava R. Kommalapati; Do-Eun Choe; Hongbo Du; Venkata S. V. Botlaguduru; Venkata S. V. Botlaguduru; Jesuina Chipindula;The Houston-Dallas (I-45) corridor is the busiest route among 18 traffic corridors in Texas, USA. The expected population growth and the surge in passenger mobility may result in a significant impact on the regional environment. This study uses a life cycle framework to predict and evaluate the net changes of environmental impact associated with the potential development of a high-speed rail (HSR) System along the I-45 corridor through its life cycle. The environmental impact is estimated in terms of CO2 and greenhouse gas (GHG) emissions per vehicle/passenger-kilometers traveled (V/PKT) using life cycle assessment. The analyses are performed referring to the Ecoinvent 3.4 inventory database through the phases: material extraction and processing, infrastructure construction, vehicle manufacturing, system operation, and end of life. The environmental benefit is evaluated by comparing the potential development of the HSR system with those of the existing transportation systems. The vehicle component, especially operation and maintenance of vehicles, is the primary contributor to the total global warming potential with about 93% of the life cycle GHG emissions. For the infrastructure component, 56.76% of GHG emissions result from the material extraction and processing phase (23.75 kgCO2eq/VKT). Various life cycle emissions of HSR except PM are significantly lower than for passenger cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Rebecca J. Barthelmie; Sara C. Pryor;doi: 10.3390/cli9090136
Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.
Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu