- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- DE
- Energy Research
- 7. Clean energy
- 11. Sustainability
- DE
Research data keyboard_double_arrow_right Dataset 2020Embargo end date: 07 Feb 2020Publisher:Harvard Dataverse Authors: Caers, Brecht;doi: 10.7910/dvn/dlzsdk
Purpose – Find optimal flight and design parameters for three objectives: minimum fuel consumption, Direct Operating Costs (DOC), and environmental impact of a passenger jet aircraft. --- Approach – Combining multiple models (this includes aerodynamics, specific fuel consumption, DOC, and equivalent CO2 mass) into one generic model. In this combined model, each objective's importance is determined by a weighting factor. Additionally, the possibility of further optimizing this model by altering an aircraft's wing loading is analyzed. --- Findings – When optimizing for a compromise between economic and ecologic benefits, the general outcome is a reduction in cruise altitude and an unaltered cruise Mach number compared to common practice. Decreasing cruise speed would benefit the environmental impact but has a negative effect on seat-mile cost. An increase in wing loading could further optimize the general outcome. Albeit at the cost of a greater required landing distance, therefore limiting the operational opportunities of this aircraft. --- Research limitations – Most models use estimating equations based on first principles and statistical data. --- Practical implications – The optimal cruise altitude and speed for a specific objective can be approximated for any passenger jet aircraft. --- Social implications – By using a simple approach, the discussion of optimizing aircraft opens up to a level where everyone can participate. --- Value – To find a general answer on how to optimize aviation, operational and design-wise, by using a simple approach. Digital Library - Projects and Theses - Prof. Dr. Scholz Excel, null
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/dlzsdk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/dlzsdk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 19 Oct 2023Publisher:Wiley Sirko Bartholomay; Sascha Krumbein; Sebastian Perez‐Becker; Rodrigo Soto‐Valle; Christian N. Nayeri; Christian O. Paschereit; Kilian Oberleithner;AbstractThis paper presents an experimental assessment of a blended fatigue‐extreme controller for load control employing trailing edge flaps on a lab‐scale wind turbine. The controller blends between a repetitive model predictive controller that targets fatigue loads and a dedicated extreme load controller, which consists of a simple on‐off load control strategy. The Fatigue controller uses the flapwise blade root bending moments of the three blades as input sensors. The Extreme controller additionally uses on‐blade angle of attack and velocity measurements as well as acceleration measurements to detect extreme events and to allow for a fast reaction. The experiments are conducted on the Berlin Research Turbine within the large wind tunnel of the TU Berlin. In order to reproduce test cases with deterministic extreme wind conditions that follow industry standards, the wind tunnel was redesigned. The analyzed test cases are extreme direction change, extreme coherent gust, extreme operating gust and extreme coherent gust with direction change. The test cases are analyzed by on‐blade angle of attack and velocity measurements. The load control performance of the Blended controller is compared to the pure fatigue oriented and the pure extreme load controller. The Blended controller achieves a maximum flapwise blade root bending moment reduction of 23%, which is comparable to the reduction achieved by the Extreme controller.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Anne Fuchs; J. Hackenberg; Christian Hönes; S. Zweigart; Susanne Siebentritt; R. Keller;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:American Society of Mechanical Engineers Davide Laera; W.P. Jones; Jim Rogerson; Aimee S. Morgans; Yu Xia;doi: 10.1115/gt2018-75146
This article presents numerical prediction of a thermoacoustic limit cycle in an industrial gas turbine combustor. The case corresponds to an experimental high pressure test rig equipped with the full-scale Siemens SGT-100 combustor operated at two mean pressure levels of 3 bar and 6 bar. The Flame Transfer Function (FTF) characterising the global unsteady response of the flame to velocity perturbations is obtained for both operating pressures by means of incompressible Large Eddy Simulations (LES). A linear stability analysis is then performed by coupling the FTFs with a wave-based low order thermoacoustic network solver. All the thermoacoustic modes predicted at 3 bar pressure are stable; whereas one of the modes at 6 bar is found to be unstable at a frequency of 231 Hz, which agrees with the experiments. A weakly nonlinear stability analysis is carried out by combining the Flame Describing Function (FDF) predicted by LES with the low order thermoacoustic network solver. The frequency, mode shape and velocity amplitude corresponding to the predicted limit cycle at 209 Hz are used to compute the absolute pressure fluctuation amplitude in the combustor. The numerically reconstructed amplitude is found to be reasonably close to the measured dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2018-75146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2018-75146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; +44 AuthorsJungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxml2hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxml2hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Steger, Christian; Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; +47 AuthorsSteger, Christian; Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DWD.MPI-ESM1-2-HR.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutscher Wetterdienst, Offenbach am Main 63067, Germany (DWD) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdwme2s585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdwme2s585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:Zenodo Authors: Florian Zabel;Natural potentials for future cropland expansion The potential for the expansion of cropland is restricted by the availability of land resources and given local natural conditions. As a result, area that is highly suitable for agriculture according to the prevailing local biophysical conditions but is not under cultivation today has a high natural potential for expansion. Policy regulations can further restrict the availability of land for expansion by designating protected areas, although they may be suitable for agriculture. Conversely, by applying e.g. irrigation practices, land can be brought under cultivation, although it may naturally not be suitable. Here, we investigate the potentials for agricultural expansion for near future climate scenario conditions to identify the suitability of non-cropland areas for expansion according to their local natural conditions. We determine the available energy, water and nutrient supply for agricultural suitability from climate, soil and topography data, by using a fuzzy logic approach according to Zabel et al. (2014). It considers the 16 globally most important staple and energy crops. These are: barley, cassava, groundnut, maize, millet, oil palm, potato, rapeseed, rice, rye, sorghum, soy, sugarcane, sunflower, summer wheat, winter wheat. The parameterization of the membership functions that describe each of the crops’ specific natural requirements is taken from Sys et al. (1993). The considered natural conditions are: climate (temperature, precipitation, solar radiation), soil properties (texture, proportion of coarse fragments and gypsum, base saturation, pH content, organic carbon content, salinity, sodicity), and topography (elevation, slope). As a result of the fuzzy logic approach, values in a range between 0 and 1 describe the suitability of a crop for each of the prevailing natural conditions at a certain location. The smallest suitability value over all parameters finally determines the suitability of a crop. The daily climate data is provided by simulation results from the global climate model ECHAM5 (Jungclaus et al. 2006) for near future (2011-2040) SRES A1B climate scenario conditions. Soil data is taken from the Harmonized World Soil Database (HWSD) (FAO et al. 2012), and topography data is applied from the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007). In order to gather a general crop suitability, which does not refer to one specific crop, the most suitable crop with the highest suitability value is chosen at each pixel. In addition the natural biophysical conditions, we consider today’s irrigated areas according to (Siebert et al. 2013). We assume that irrigated areas globally remain constant until 2040, since adequate data on the development of irrigated areas do not exist, although it is likely that freshwater availability for irrigation could be limited in some regions, while in other regions surplus water supply could be used to expand irrigation practices (Elliott et al. 2014). However, it is difficult to project where irrigation practices will evolve, since it is driven by economic investment costs that are required to establish irrigation infrastructure. In principle, all agriculturally suitable land that is not used as cropland today has the natural potential to be converted into cropland. We assume that only urban and built-up areas are not available for conversion, although more than 80% of global urban areas are agriculturally suitable (Avellan et al. 2012). However, it seems unlikely that urban areas will be cleared at the large scale due to high investment costs, growing cities and growing demand for settlements. Concepts of urban and vertical farming usually are discussed under the aspects of cultivating fresh vegetables and salads for urban population. They are not designed to extensively grow staple crops such as wheat or maize for feeding the world in the near future. Urban farming would require one third of the total global urban area to meet only the global vegetable consumption of urban dwellers (Martellozzo et al. 2015). Thus, urban agriculture cannot substantially contribute to global agricultural production of staple crops. Protected areas or dense forested areas are not excluded from the calculation, in order not to lose any information in the further combination with the biodiversity patterns (see chapter 2.3). We use data on current cropland distribution by Ramankutty et al. (2008) and urban and built-up area according to the ESA-CCI land use/cover dataset (ESA 2014). From this data, we calculate the ‘natural expansion potential index’ (Iexp) that expresses the natural potential for an area to be converted into cropland as follows: Iexp = S * Aav The index is determined by the quality of agricultural suitability (S) (values between 0 and 1) multiplied with the amount of available area (Aav) for conversion (in percentage of pixel area). The available area includes all suitable area that is not cultivated today, and not classified as urban or artificial area. The index ranges between 0 and 100 and indicates where the conditions for cropland expansion are more or less favorable, when taking only natural conditions into account, disregarding socio-economic factors, policies and regulations that drive or inhibit cropland expansion. The index is a helpful indicator for identifying areas where cropland expansion could take place in the near future. Further information Detailled information are available in the following publication: Delzeit, R., F. Zabel, C. Meyer and T. Václavík (2017). Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change 17(5): 1429-1441. DOI: 10.1007/s10113-016-0927-1 Contact Please contact: Dr. Florian Zabel, f.zabel@lmu.de, Department für Geographie, LMU München (www.geografie.uni-muenchen.de) This research was carried out within the framework of the GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) Project, which has been supported by the German Ministry of Education and Research (BMBF) program on sustainable land management (grant number: 01LL0901E).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 150visibility views 150 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 31 Jan 2021Publisher:Mendeley Authors: Netter, Tobias;The presented Solid Fuel Entrained Flow Gasification Database contains complete datasets on individual solid fuels considering the most important physical properties and conversion behavior analysis necessary for the simulation of pressurized high temperature entrained flow gasification. This includes their composition (proximate- and ultimate analysis, XRF of ash at 200, 450, 815 and 1500 °C) as well as physical properties such as original mineral phase composition (XRD), density (true and tap) and particle size distribution. The database also contains data on fuel behavior such as heating values, swelling factors, fragmentation index, slag viscosity, ash melting behavior and ash mineral phase evolution during heat-up and cool-down. Moreover, the database provides model parameters describing their pyrolysis behavior, gasification kinetics including product gas inhibition, thermal deactivation and surface area development. Chars produced and gasified in pressurized high temperature entrained flow reactors like the PiTER (located at the Chair of Energy Systems of the Technical University of Munich) and the KIVAN (operated by the Institute of Energy Process Engineering and Chemical Engineering of the TU Bergakademie Freiberg) were analyzed in thermogravimetric and structural analyzer. Since these reactors are designed for temperatures up to 1800 °C (PiTER) and pressures up to 100 bar (KIVAN), the resulting model parameters are relevant for the simulation of industrial scale applications. In order to validate the applied models for entrained flow gasification kinetics, the database refers to several publications describing the models and experimental setups as well as providing additional experimental data points.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/rhvfd6cdmx.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/rhvfd6cdmx.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Embargo end date: 07 Feb 2020Publisher:Harvard Dataverse Authors: Caers, Brecht;doi: 10.7910/dvn/dlzsdk
Purpose – Find optimal flight and design parameters for three objectives: minimum fuel consumption, Direct Operating Costs (DOC), and environmental impact of a passenger jet aircraft. --- Approach – Combining multiple models (this includes aerodynamics, specific fuel consumption, DOC, and equivalent CO2 mass) into one generic model. In this combined model, each objective's importance is determined by a weighting factor. Additionally, the possibility of further optimizing this model by altering an aircraft's wing loading is analyzed. --- Findings – When optimizing for a compromise between economic and ecologic benefits, the general outcome is a reduction in cruise altitude and an unaltered cruise Mach number compared to common practice. Decreasing cruise speed would benefit the environmental impact but has a negative effect on seat-mile cost. An increase in wing loading could further optimize the general outcome. Albeit at the cost of a greater required landing distance, therefore limiting the operational opportunities of this aircraft. --- Research limitations – Most models use estimating equations based on first principles and statistical data. --- Practical implications – The optimal cruise altitude and speed for a specific objective can be approximated for any passenger jet aircraft. --- Social implications – By using a simple approach, the discussion of optimizing aircraft opens up to a level where everyone can participate. --- Value – To find a general answer on how to optimize aviation, operational and design-wise, by using a simple approach. Digital Library - Projects and Theses - Prof. Dr. Scholz Excel, null
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/dlzsdk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/dlzsdk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 19 Oct 2023Publisher:Wiley Sirko Bartholomay; Sascha Krumbein; Sebastian Perez‐Becker; Rodrigo Soto‐Valle; Christian N. Nayeri; Christian O. Paschereit; Kilian Oberleithner;AbstractThis paper presents an experimental assessment of a blended fatigue‐extreme controller for load control employing trailing edge flaps on a lab‐scale wind turbine. The controller blends between a repetitive model predictive controller that targets fatigue loads and a dedicated extreme load controller, which consists of a simple on‐off load control strategy. The Fatigue controller uses the flapwise blade root bending moments of the three blades as input sensors. The Extreme controller additionally uses on‐blade angle of attack and velocity measurements as well as acceleration measurements to detect extreme events and to allow for a fast reaction. The experiments are conducted on the Berlin Research Turbine within the large wind tunnel of the TU Berlin. In order to reproduce test cases with deterministic extreme wind conditions that follow industry standards, the wind tunnel was redesigned. The analyzed test cases are extreme direction change, extreme coherent gust, extreme operating gust and extreme coherent gust with direction change. The test cases are analyzed by on‐blade angle of attack and velocity measurements. The load control performance of the Blended controller is compared to the pure fatigue oriented and the pure extreme load controller. The Blended controller achieves a maximum flapwise blade root bending moment reduction of 23%, which is comparable to the reduction achieved by the Extreme controller.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Anne Fuchs; J. Hackenberg; Christian Hönes; S. Zweigart; Susanne Siebentritt; R. Keller;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:American Society of Mechanical Engineers Davide Laera; W.P. Jones; Jim Rogerson; Aimee S. Morgans; Yu Xia;doi: 10.1115/gt2018-75146
This article presents numerical prediction of a thermoacoustic limit cycle in an industrial gas turbine combustor. The case corresponds to an experimental high pressure test rig equipped with the full-scale Siemens SGT-100 combustor operated at two mean pressure levels of 3 bar and 6 bar. The Flame Transfer Function (FTF) characterising the global unsteady response of the flame to velocity perturbations is obtained for both operating pressures by means of incompressible Large Eddy Simulations (LES). A linear stability analysis is then performed by coupling the FTFs with a wave-based low order thermoacoustic network solver. All the thermoacoustic modes predicted at 3 bar pressure are stable; whereas one of the modes at 6 bar is found to be unstable at a frequency of 231 Hz, which agrees with the experiments. A weakly nonlinear stability analysis is carried out by combining the Flame Describing Function (FDF) predicted by LES with the low order thermoacoustic network solver. The frequency, mode shape and velocity amplitude corresponding to the predicted limit cycle at 209 Hz are used to compute the absolute pressure fluctuation amplitude in the combustor. The numerically reconstructed amplitude is found to be reasonably close to the measured dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2018-75146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2018-75146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; +44 AuthorsJungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxml2hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxml2hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Steger, Christian; Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; +47 AuthorsSteger, Christian; Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DWD.MPI-ESM1-2-HR.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutscher Wetterdienst, Offenbach am Main 63067, Germany (DWD) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdwme2s585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdwme2s585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:Zenodo Authors: Florian Zabel;Natural potentials for future cropland expansion The potential for the expansion of cropland is restricted by the availability of land resources and given local natural conditions. As a result, area that is highly suitable for agriculture according to the prevailing local biophysical conditions but is not under cultivation today has a high natural potential for expansion. Policy regulations can further restrict the availability of land for expansion by designating protected areas, although they may be suitable for agriculture. Conversely, by applying e.g. irrigation practices, land can be brought under cultivation, although it may naturally not be suitable. Here, we investigate the potentials for agricultural expansion for near future climate scenario conditions to identify the suitability of non-cropland areas for expansion according to their local natural conditions. We determine the available energy, water and nutrient supply for agricultural suitability from climate, soil and topography data, by using a fuzzy logic approach according to Zabel et al. (2014). It considers the 16 globally most important staple and energy crops. These are: barley, cassava, groundnut, maize, millet, oil palm, potato, rapeseed, rice, rye, sorghum, soy, sugarcane, sunflower, summer wheat, winter wheat. The parameterization of the membership functions that describe each of the crops’ specific natural requirements is taken from Sys et al. (1993). The considered natural conditions are: climate (temperature, precipitation, solar radiation), soil properties (texture, proportion of coarse fragments and gypsum, base saturation, pH content, organic carbon content, salinity, sodicity), and topography (elevation, slope). As a result of the fuzzy logic approach, values in a range between 0 and 1 describe the suitability of a crop for each of the prevailing natural conditions at a certain location. The smallest suitability value over all parameters finally determines the suitability of a crop. The daily climate data is provided by simulation results from the global climate model ECHAM5 (Jungclaus et al. 2006) for near future (2011-2040) SRES A1B climate scenario conditions. Soil data is taken from the Harmonized World Soil Database (HWSD) (FAO et al. 2012), and topography data is applied from the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007). In order to gather a general crop suitability, which does not refer to one specific crop, the most suitable crop with the highest suitability value is chosen at each pixel. In addition the natural biophysical conditions, we consider today’s irrigated areas according to (Siebert et al. 2013). We assume that irrigated areas globally remain constant until 2040, since adequate data on the development of irrigated areas do not exist, although it is likely that freshwater availability for irrigation could be limited in some regions, while in other regions surplus water supply could be used to expand irrigation practices (Elliott et al. 2014). However, it is difficult to project where irrigation practices will evolve, since it is driven by economic investment costs that are required to establish irrigation infrastructure. In principle, all agriculturally suitable land that is not used as cropland today has the natural potential to be converted into cropland. We assume that only urban and built-up areas are not available for conversion, although more than 80% of global urban areas are agriculturally suitable (Avellan et al. 2012). However, it seems unlikely that urban areas will be cleared at the large scale due to high investment costs, growing cities and growing demand for settlements. Concepts of urban and vertical farming usually are discussed under the aspects of cultivating fresh vegetables and salads for urban population. They are not designed to extensively grow staple crops such as wheat or maize for feeding the world in the near future. Urban farming would require one third of the total global urban area to meet only the global vegetable consumption of urban dwellers (Martellozzo et al. 2015). Thus, urban agriculture cannot substantially contribute to global agricultural production of staple crops. Protected areas or dense forested areas are not excluded from the calculation, in order not to lose any information in the further combination with the biodiversity patterns (see chapter 2.3). We use data on current cropland distribution by Ramankutty et al. (2008) and urban and built-up area according to the ESA-CCI land use/cover dataset (ESA 2014). From this data, we calculate the ‘natural expansion potential index’ (Iexp) that expresses the natural potential for an area to be converted into cropland as follows: Iexp = S * Aav The index is determined by the quality of agricultural suitability (S) (values between 0 and 1) multiplied with the amount of available area (Aav) for conversion (in percentage of pixel area). The available area includes all suitable area that is not cultivated today, and not classified as urban or artificial area. The index ranges between 0 and 100 and indicates where the conditions for cropland expansion are more or less favorable, when taking only natural conditions into account, disregarding socio-economic factors, policies and regulations that drive or inhibit cropland expansion. The index is a helpful indicator for identifying areas where cropland expansion could take place in the near future. Further information Detailled information are available in the following publication: Delzeit, R., F. Zabel, C. Meyer and T. Václavík (2017). Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change 17(5): 1429-1441. DOI: 10.1007/s10113-016-0927-1 Contact Please contact: Dr. Florian Zabel, f.zabel@lmu.de, Department für Geographie, LMU München (www.geografie.uni-muenchen.de) This research was carried out within the framework of the GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) Project, which has been supported by the German Ministry of Education and Research (BMBF) program on sustainable land management (grant number: 01LL0901E).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 150visibility views 150 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 31 Jan 2021Publisher:Mendeley Authors: Netter, Tobias;The presented Solid Fuel Entrained Flow Gasification Database contains complete datasets on individual solid fuels considering the most important physical properties and conversion behavior analysis necessary for the simulation of pressurized high temperature entrained flow gasification. This includes their composition (proximate- and ultimate analysis, XRF of ash at 200, 450, 815 and 1500 °C) as well as physical properties such as original mineral phase composition (XRD), density (true and tap) and particle size distribution. The database also contains data on fuel behavior such as heating values, swelling factors, fragmentation index, slag viscosity, ash melting behavior and ash mineral phase evolution during heat-up and cool-down. Moreover, the database provides model parameters describing their pyrolysis behavior, gasification kinetics including product gas inhibition, thermal deactivation and surface area development. Chars produced and gasified in pressurized high temperature entrained flow reactors like the PiTER (located at the Chair of Energy Systems of the Technical University of Munich) and the KIVAN (operated by the Institute of Energy Process Engineering and Chemical Engineering of the TU Bergakademie Freiberg) were analyzed in thermogravimetric and structural analyzer. Since these reactors are designed for temperatures up to 1800 °C (PiTER) and pressures up to 100 bar (KIVAN), the resulting model parameters are relevant for the simulation of industrial scale applications. In order to validate the applied models for entrained flow gasification kinetics, the database refers to several publications describing the models and experimental setups as well as providing additional experimental data points.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/rhvfd6cdmx.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/rhvfd6cdmx.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu