search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • DE
  • ZENODO

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Plötz, Patrick;

    Technical and economic developments in battery and fast-charging technologies could soon make fuel cell electric vehicles, which run on hydrogen, superfluous in road transport

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Electronicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Electronics
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads318
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Electronicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Electronics
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Helga Pankoke; Ingo Höpfner; Agnieszka Matuszak; Wolfram Beyschlag; +1 Authors

    Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence compounds of P. lanceolata, the iridoid glycoside catalpol. In general, the interaction of competition and limited mineral N supply led to additive changes, while the association with AMF in any case alleviated the observed stress responses. Our results show that the joint analysis of biomass/allocation patterns and metabolic traits allows a more comprehensive interpretation of plant responses to different biotic and abiotic challenges; specifically, when multiple stresses interact.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Phytochemistry
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ZENODO
    Article . 2015
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Phytochemistry
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      ZENODO
      Article . 2015
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pereira Santos, Alexandre; Rodriguez Lopez, Miguel; Scheffran, Jürgen;

    Global crises such as climate change and the COVID-19 pandemic do not affect cities uniformly. These crises converge in urban areas and often interact through their primary and secondary impacts with the vulnerability of urban populations. This paper investigates urban development dynamics and socio-environmental vulnerability in a megalopolis in the Global South, São Paulo (Brasil). Our goal is to assess the connections between urbanisation and risk exposure, a gap in vulnerability research when considering climate and health hazards. We implement an innovative mixed methods research design using thematic, hot spots, and survival analysis techniques. Two focus groups at the central and peripheral regions of the city provide qualitative data, while open data sets and COVID-19 case microdata (n= 1,948,601) support the quantitative methods. We find a complex system of relationships between urbanisation and risk exposure. Socioeconomic vulnerability characteristics of the population do not explain exposure entirely but significantly contribute to risk-prone location choices. Additionally, social vulnerability factors such as low income and social segregation are highly concentrated in São Paulo, coinciding with substantial COVID-19 fatality rates during 25 months of the pandemic. Finally, qualitative analysis helps us overcome the limitations of quantitative methods on the intraurban scale, indicating contrasting experiences of resilience and resistance during the health crisis. While the low-income group faced mental health and food security issues, the upper-middle-income sample took advantage of opportunities arising during the pandemic to improve work and well-being. We argue that these results demonstrate potential synergies for climate adaptation and health policies in combating socio-environmental vulnerability at the community scale. Environmental justice is thus paramount for global development agendas such as the Sustainable Development Goals, Sendai Framework, and the Paris Agreement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Conference object . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Conference object . 2023
    Data sources: Datacite
    https://doi.org/10.5194/egusph...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Other literature type . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Conference object . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Conference object . 2023
      Data sources: Datacite
      https://doi.org/10.5194/egusph...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Other literature type . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hujun Cao; Claudio Pistidda; Maria Victoria Castro Riglos; Anna-Lisa Chaudhary; +8 Authors

    A new route to synthesize the Mg(NH2)2–2LiH composite is proposed starting from magnesium waste alloy and LiH, after a multi-step treatment. This is an effective way to convert magnesium waste into light weight hydrogen storage materials.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy & Fuels
    Article . 2020 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    ZENODO
    Article . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy & Fuels
      Article . 2020 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      ZENODO
      Article . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sharon M. Swartz; Pedro Beja; Pedro Beja; Martina Scacco; +16 Authors

    (Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1, 2, 3, 4, 5, 6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7, 8, 9 Individuals make repeated, energetically costly high-altitude ascents,10, 11, 12, 13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15, 16, 17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h−1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Current Biology
    Article . 2021 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: ZENODO
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: ZENODO
    ZENODO
    Article . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility94
    visibilityviews94
    downloaddownloads47
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Current Biology
      Article . 2021 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: ZENODO
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: ZENODO
      ZENODO
      Article . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pétursdóttir, Ásta H.; Gunnlaugsdóttir, Helga; Desnica, Natasa; Ólafsdóttir, Aðalheiður; +5 Authors

    The results of SeaCH4NGE include a detailed analysis of the chemical composition of seaweeds, including heavy metals and nutritional composition. This elucidated that iodine was the main concern prior to feeding trials. Chemical analysis of the compounds that may be responsible for methane reduction showed that for the seaweeds investigated the reduction seen in-vitro was likely due to compounds called phlorotannins rather than bromoform. The in-vitro screening of the seaweeds showed a some reduction of methane, but the reduction was seaweed species dependent. The reduction was dose dependent, i.e. higher amount of seaweed inclusion resulted in larger methane reduction in-vitro. The same two seaweed species were used for a Rusitec experiment (in-vitro) which is a very comprehensive analysis which provides additional information. The in-vivo trial carried out showed that feeding A. nodosum and Fucus vesiculosus to cattle has a relatively small effect on methane emission or yield. However, phlorotannins are known to have other beneficial effects when consumed by ruminants. The report further contains responses from a questionnaire to UK cattle farmers regarding their stance on seaweed supplementation and environmental matters. This report is closed until 31.12.2023. ____ Niðurstöður SeaCH4NGE fela í sér ítarlega greiningu á efnasamsetningu þangs, þ.m.t þungmálma og næringarsamsetningu. Joð styrkur reyndist helsti takmarkandi þáttur varðandi þang sem fóðurbæti. Líklegt er að sú metan minnkun sem sást með tilraunum á metanframleiðslu á rannsóknarstofu (in vitro) væri vegna efnasambanda sem kallast flórótannín frekar en brómóforms sem er þekkt efni sem getur minnkað metanframleiðslu jórturdýra. In vitro skimun þangsins sýndi hóflega minnkun metans, en lægri metanframleiðsla var háð þangtegundum. Lækkunin var skammtaháð, þ.e.a.s. með því að nota meira magn af þangi mátti sjá meiri metan minnkun in vitro. Sömu tvær þangtegundirnar voru notaðar við Rusitec tilraun (in vitro) sem er mjög yfirgripsmikil greining sem veitir frekari upplýsingar. In-vivo rannsókn á kúm sýndi að fóðrun nautgripa með A. nodosum og Fucus vesiculosus hefur tiltölulega lítil áhrif á losun metans. Hins vegar er vitað að flórótannín hafa önnur jákvæð áhrif þegar þau eru neytt af jórturdýrum. Skýrslan inniheldur einnig könnun sem var gerð á viðhorfi breskra kúabænda til þörungagjafar og loftslagsmála. Þessari skýrsla er lokað til 31.12.2023. Funding: EIT Food

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    ZENODO
    Article . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility114
    visibilityviews114
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      ZENODO
      Article . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    (Uploaded by Plazi for the Bat Literature Project) No abstract provided.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2007 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2007
    Data sources: Datacite
    ZENODO
    Article . 2007
    Data sources: ZENODO
    ZENODO
    Article . 2007
    Data sources: Datacite
    Nature
    Article . 2008
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    245
    citations245
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2007 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2007
      Data sources: Datacite
      ZENODO
      Article . 2007
      Data sources: ZENODO
      ZENODO
      Article . 2007
      Data sources: Datacite
      Nature
      Article . 2008
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Accepted version of the final manuscript and data files for import into openLCA There is still a remaining error in the datasets. Please contact the authors before re-using the files This update contains the inventory data as described in the underlying corrigendum to the original publication from 2018 for direct import and re-use in LCA software (JSON-LD format; exported from openLCA). The LCI data are updated to ecoinvent 3.71., and the error in the electrolyte model is corrected (V2O5 content was double in the original dataset, overstimating the corresponding environmental impacts). Import into openLCA using the JSON-LD format should maintain all default providers except those that suffered changes between the ei versions

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Article . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    169
    citations169
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Article . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The diversity of the small Araneoidea spider family Anapidae from the Chocó region of Ecuador is examined. A total of 325 Anapidae specimens were collected from which seven new species all from the genus Anapis were discovered and herein described: Anapis anabelleae n. sp., A. carmencita n. sp., A. churu n. sp., A. mariebertheae n. sp., A. naranja n. sp., A. nawchi n. sp. and A. shina n. sp. Furthermore, the male of Anapisona pecki Platnick & Shadab 1979 is described for the first time, and new locality data are provided for Anapis chiriboga Platnick & Shadab 1978 and Pseudanapsis domingo Platnick & Shadab 1979. 

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    Zootaxa
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Article . 2018
    Data sources: ZENODO
    Zootaxa
    Article . 2018
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility56
    visibilityviews56
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      Zootaxa
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Article . 2018
      Data sources: ZENODO
      Zootaxa
      Article . 2018
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mutascu Mihai Ioan; Albulescu Claudiu Tiberiu; Apergis Nicholas; Magazzino Cosimo;

    This study investigates the co-movements of gasoline and diesel prices in three European countries (i.e. Germany, France, and Italy) with different fuel tax systems in place. The methodology follows a time-frequency approach, allowing us to analyse the co-movements at different frequencies and moments in time. As a novelty, we study the impact of fuel tax systems and international oil price dynamics on gasoline and diesel price co-movement. Using weekly data spanning the period from January 2005 to June 2021, the wavelet coherence analysis shows co-movements between gasoline and diesel at all frequencies, as well as during specific periods, but stronger in the long run. This evidence is recorded across all three countries, regardless of their tax systems. However, in decoupling the effect of international oil prices, the partial wavelet coherence analysis shows co-movements emerging also in the short run, with them being stronger around the global financial crisis (2008-2009). Although gasoline taxes are generally higher than diesel taxes, the analysis highlights that fuel tax systems do not influence the co-movements of fuel prices. Thus, shedding new light on the co-movement between commodity prices is fundamental, particularly in light of the current international geopolitical scene.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility33
    visibilityviews33
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Plötz, Patrick;

    Technical and economic developments in battery and fast-charging technologies could soon make fuel cell electric vehicles, which run on hydrogen, superfluous in road transport

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Electronicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Electronics
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads318
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Electronicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Electronics
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Helga Pankoke; Ingo Höpfner; Agnieszka Matuszak; Wolfram Beyschlag; +1 Authors

    Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence compounds of P. lanceolata, the iridoid glycoside catalpol. In general, the interaction of competition and limited mineral N supply led to additive changes, while the association with AMF in any case alleviated the observed stress responses. Our results show that the joint analysis of biomass/allocation patterns and metabolic traits allows a more comprehensive interpretation of plant responses to different biotic and abiotic challenges; specifically, when multiple stresses interact.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Phytochemistry
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ZENODO
    Article . 2015
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Phytochemistry
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      ZENODO
      Article . 2015
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pereira Santos, Alexandre; Rodriguez Lopez, Miguel; Scheffran, Jürgen;

    Global crises such as climate change and the COVID-19 pandemic do not affect cities uniformly. These crises converge in urban areas and often interact through their primary and secondary impacts with the vulnerability of urban populations. This paper investigates urban development dynamics and socio-environmental vulnerability in a megalopolis in the Global South, São Paulo (Brasil). Our goal is to assess the connections between urbanisation and risk exposure, a gap in vulnerability research when considering climate and health hazards. We implement an innovative mixed methods research design using thematic, hot spots, and survival analysis techniques. Two focus groups at the central and peripheral regions of the city provide qualitative data, while open data sets and COVID-19 case microdata (n= 1,948,601) support the quantitative methods. We find a complex system of relationships between urbanisation and risk exposure. Socioeconomic vulnerability characteristics of the population do not explain exposure entirely but significantly contribute to risk-prone location choices. Additionally, social vulnerability factors such as low income and social segregation are highly concentrated in São Paulo, coinciding with substantial COVID-19 fatality rates during 25 months of the pandemic. Finally, qualitative analysis helps us overcome the limitations of quantitative methods on the intraurban scale, indicating contrasting experiences of resilience and resistance during the health crisis. While the low-income group faced mental health and food security issues, the upper-middle-income sample took advantage of opportunities arising during the pandemic to improve work and well-being. We argue that these results demonstrate potential synergies for climate adaptation and health policies in combating socio-environmental vulnerability at the community scale. Environmental justice is thus paramount for global development agendas such as the Sustainable Development Goals, Sendai Framework, and the Paris Agreement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Conference object . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Conference object . 2023
    Data sources: Datacite
    https://doi.org/10.5194/egusph...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Other literature type . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Conference object . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Conference object . 2023
      Data sources: Datacite
      https://doi.org/10.5194/egusph...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Other literature type . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hujun Cao; Claudio Pistidda; Maria Victoria Castro Riglos; Anna-Lisa Chaudhary; +8 Authors

    A new route to synthesize the Mg(NH2)2–2LiH composite is proposed starting from magnesium waste alloy and LiH, after a multi-step treatment. This is an effective way to convert magnesium waste into light weight hydrogen storage materials.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy & Fuels
    Article . 2020 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    ZENODO
    Article . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy & Fuels
      Article . 2020 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      ZENODO
      Article . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sharon M. Swartz; Pedro Beja; Pedro Beja; Martina Scacco; +16 Authors

    (Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1, 2, 3, 4, 5, 6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7, 8, 9 Individuals make repeated, energetically costly high-altitude ascents,10, 11, 12, 13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15, 16, 17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h−1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Current Biology
    Article . 2021 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: ZENODO
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: ZENODO
    ZENODO
    Article . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility94
    visibilityviews94
    downloaddownloads47
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Current Biology
      Article . 2021 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: ZENODO
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: ZENODO
      ZENODO
      Article . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pétursdóttir, Ásta H.; Gunnlaugsdóttir, Helga; Desnica, Natasa; Ólafsdóttir, Aðalheiður; +5 Authors

    The results of SeaCH4NGE include a detailed analysis of the chemical composition of seaweeds, including heavy metals and nutritional composition. This elucidated that iodine was the main concern prior to feeding trials. Chemical analysis of the compounds that may be responsible for methane reduction showed that for the seaweeds investigated the reduction seen in-vitro was likely due to compounds called phlorotannins rather than bromoform. The in-vitro screening of the seaweeds showed a some reduction of methane, but the reduction was seaweed species dependent. The reduction was dose dependent, i.e. higher amount of seaweed inclusion resulted in larger methane reduction in-vitro. The same two seaweed species were used for a Rusitec experiment (in-vitro) which is a very comprehensive analysis which provides additional information. The in-vivo trial carried out showed that feeding A. nodosum and Fucus vesiculosus to cattle has a relatively small effect on methane emission or yield. However, phlorotannins are known to have other beneficial effects when consumed by ruminants. The report further contains responses from a questionnaire to UK cattle farmers regarding their stance on seaweed supplementation and environmental matters. This report is closed until 31.12.2023. ____ Niðurstöður SeaCH4NGE fela í sér ítarlega greiningu á efnasamsetningu þangs, þ.m.t þungmálma og næringarsamsetningu. Joð styrkur reyndist helsti takmarkandi þáttur varðandi þang sem fóðurbæti. Líklegt er að sú metan minnkun sem sást með tilraunum á metanframleiðslu á rannsóknarstofu (in vitro) væri vegna efnasambanda sem kallast flórótannín frekar en brómóforms sem er þekkt efni sem getur minnkað metanframleiðslu jórturdýra. In vitro skimun þangsins sýndi hóflega minnkun metans, en lægri metanframleiðsla var háð þangtegundum. Lækkunin var skammtaháð, þ.e.a.s. með því að nota meira magn af þangi mátti sjá meiri metan minnkun in vitro. Sömu tvær þangtegundirnar voru notaðar við Rusitec tilraun (in vitro) sem er mjög yfirgripsmikil greining sem veitir frekari upplýsingar. In-vivo rannsókn á kúm sýndi að fóðrun nautgripa með A. nodosum og Fucus vesiculosus hefur tiltölulega lítil áhrif á losun metans. Hins vegar er vitað að flórótannín hafa önnur jákvæð áhrif þegar þau eru neytt af jórturdýrum. Skýrslan inniheldur einnig könnun sem var gerð á viðhorfi breskra kúabænda til þörungagjafar og loftslagsmála. Þessari skýrsla er lokað til 31.12.2023. Funding: EIT Food

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    ZENODO
    Article . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility114
    visibilityviews114
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      ZENODO
      Article . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    (Uploaded by Plazi for the Bat Literature Project) No abstract provided.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2007 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2007
    Data sources: Datacite
    ZENODO
    Article . 2007
    Data sources: ZENODO
    ZENODO
    Article . 2007
    Data sources: Datacite
    Nature
    Article . 2008
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    245
    citations245
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2007 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2007
      Data sources: Datacite
      ZENODO
      Article . 2007
      Data sources: ZENODO
      ZENODO
      Article . 2007
      Data sources: Datacite
      Nature
      Article . 2008
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Accepted version of the final manuscript and data files for import into openLCA There is still a remaining error in the datasets. Please contact the authors before re-using the files This update contains the inventory data as described in the underlying corrigendum to the original publication from 2018 for direct import and re-use in LCA software (JSON-LD format; exported from openLCA). The LCI data are updated to ecoinvent 3.71., and the error in the electrolyte model is corrected (V2O5 content was double in the original dataset, overstimating the corresponding environmental impacts). Import into openLCA using the JSON-LD format should maintain all default providers except those that suffered changes between the ei versions

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Article . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    169
    citations169
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Article . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The diversity of the small Araneoidea spider family Anapidae from the Chocó region of Ecuador is examined. A total of 325 Anapidae specimens were collected from which seven new species all from the genus Anapis were discovered and herein described: Anapis anabelleae n. sp., A. carmencita n. sp., A. churu n. sp., A. mariebertheae n. sp., A. naranja n. sp., A. nawchi n. sp. and A. shina n. sp. Furthermore, the male of Anapisona pecki Platnick & Shadab 1979 is described for the first time, and new locality data are provided for Anapis chiriboga Platnick & Shadab 1978 and Pseudanapsis domingo Platnick & Shadab 1979. 

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2018
    Data sources: Datacite
    Zootaxa
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    ZENODO
    Article . 2018
    Data sources: ZENODO
    Zootaxa
    Article . 2018
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility56
    visibilityviews56
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2018
      Data sources: Datacite
      Zootaxa
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      ZENODO
      Article . 2018
      Data sources: ZENODO
      Zootaxa
      Article . 2018
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mutascu Mihai Ioan; Albulescu Claudiu Tiberiu; Apergis Nicholas; Magazzino Cosimo;

    This study investigates the co-movements of gasoline and diesel prices in three European countries (i.e. Germany, France, and Italy) with different fuel tax systems in place. The methodology follows a time-frequency approach, allowing us to analyse the co-movements at different frequencies and moments in time. As a novelty, we study the impact of fuel tax systems and international oil price dynamics on gasoline and diesel price co-movement. Using weekly data spanning the period from January 2005 to June 2021, the wavelet coherence analysis shows co-movements between gasoline and diesel at all frequencies, as well as during specific periods, but stronger in the long run. This evidence is recorded across all three countries, regardless of their tax systems. However, in decoupling the effect of international oil prices, the partial wavelet coherence analysis shows co-movements emerging also in the short run, with them being stronger around the global financial crisis (2008-2009). Although gasoline taxes are generally higher than diesel taxes, the analysis highlights that fuel tax systems do not influence the co-movements of fuel prices. Thus, shedding new light on the co-movement between commodity prices is fundamental, particularly in light of the current international geopolitical scene.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility33
    visibilityviews33
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.