- home
- Search
- Energy Research
- IT
- ES
- DE
- ZENODO
- Energy Research
- IT
- ES
- DE
- ZENODO
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors:Rodríguez-Medina, Jairo;
Rodríguez-Medina, Jairo
Rodríguez-Medina, Jairo in OpenAIREGómez, Cosme;
Gómez, Cosme
Gómez, Cosme in OpenAIREMiralles-Martínez, Pedro;
Miralles-Martínez, Pedro
Miralles-Martínez, Pedro in OpenAIREAZNAR DIAZ, INMACULADA;
AZNAR DIAZ, INMACULADA
AZNAR DIAZ, INMACULADA in OpenAIREdoi: 10.3390/su12083124
handle: 10481/62492
We evaluated a teacher training intervention programme aimed at improving the teaching and learning process relating to history in the secondary classroom. This was carried out via the implementation of several teaching units during the period of teaching practice of trainee teachers specialising in geography and history. The design of the teaching units was based on historical thinking competencies and on the introduction of active learning strategies. The programme was evaluated via a quasi-experimental A-B type methodological approach employing a pretest and a post-test. Both tools were designed on the basis of four dimensions (methodology, motivation, satisfaction and perception). The content of the tools was validated using the interjudge process via a discussion group in the first round and with a Likert scale questionnaire (1–4) with seven experts in the second round. The reliability of the tools has been estimated via three indices (Cronbach’s alpha, composite reliability and omega), and the validity of the construct via an exploratory (EFA) and confirmatory factor analysis (CFA) with the structural equation model. The results regarding reliability and validity have been adequate. Furthermore, the descriptive results show an improvement in all of the dimensions following the implementation of the teaching units, particularly with regard to group work, the use of digital resources and work with primary sources.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3124/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BYFull-Text: https://uvadoc.uva.es/bitstream/10324/52581/1/Evaluation-intervention-programme-teacher-training.pdfData sources: Repositorio Documental de la Universidad de ValladolidRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3124/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BYFull-Text: https://uvadoc.uva.es/bitstream/10324/52581/1/Evaluation-intervention-programme-teacher-training.pdfData sources: Repositorio Documental de la Universidad de ValladolidRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors:Rodríguez-Medina, Jairo;
Rodríguez-Medina, Jairo
Rodríguez-Medina, Jairo in OpenAIREGómez, Cosme;
Gómez, Cosme
Gómez, Cosme in OpenAIREMiralles-Martínez, Pedro;
Miralles-Martínez, Pedro
Miralles-Martínez, Pedro in OpenAIREAZNAR DIAZ, INMACULADA;
AZNAR DIAZ, INMACULADA
AZNAR DIAZ, INMACULADA in OpenAIREdoi: 10.3390/su12083124
handle: 10481/62492
We evaluated a teacher training intervention programme aimed at improving the teaching and learning process relating to history in the secondary classroom. This was carried out via the implementation of several teaching units during the period of teaching practice of trainee teachers specialising in geography and history. The design of the teaching units was based on historical thinking competencies and on the introduction of active learning strategies. The programme was evaluated via a quasi-experimental A-B type methodological approach employing a pretest and a post-test. Both tools were designed on the basis of four dimensions (methodology, motivation, satisfaction and perception). The content of the tools was validated using the interjudge process via a discussion group in the first round and with a Likert scale questionnaire (1–4) with seven experts in the second round. The reliability of the tools has been estimated via three indices (Cronbach’s alpha, composite reliability and omega), and the validity of the construct via an exploratory (EFA) and confirmatory factor analysis (CFA) with the structural equation model. The results regarding reliability and validity have been adequate. Furthermore, the descriptive results show an improvement in all of the dimensions following the implementation of the teaching units, particularly with regard to group work, the use of digital resources and work with primary sources.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3124/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BYFull-Text: https://uvadoc.uva.es/bitstream/10324/52581/1/Evaluation-intervention-programme-teacher-training.pdfData sources: Repositorio Documental de la Universidad de ValladolidRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3124/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BYFull-Text: https://uvadoc.uva.es/bitstream/10324/52581/1/Evaluation-intervention-programme-teacher-training.pdfData sources: Repositorio Documental de la Universidad de ValladolidRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Italy, SpainPublisher:Elsevier BV Authors:Mastronardo E.;
Sanchez M.;Mastronardo E.
Mastronardo E. in OpenAIREGonzalez-Aguilar J.;
Gonzalez-Aguilar J.
Gonzalez-Aguilar J. in OpenAIRECoronado J. M.;
Coronado J. M.
Coronado J. M. in OpenAIREhandle: 10261/358887 , 11570/3246433
Thermodynamic cycles requiring high operating temperatures (≥750 °C up to 1200 °C) are currently being explored to improve the sun-to-electricity conversion efficiency of Concentrating Solar Power (CSP) plants. This is calling for the design of new efficient high-temperature (≥750 °C) Thermochemical Energy Storage (TCES) systems, which are fundamental for supplying power on demand during off-sun periods. Recently, Fe-doped CaMnO3 oxides have been proposed as TCES candidate materials, and the determination of their thermodynamics properties via thermogravimetric (TG) analysis allowed evaluation of their heat storage capacity at a very small scale (mg scale). A 10 % Fe-doped CaMnO3 composition (CaMn0.9Fe0.1O3-δ – CMF91) emerged as optimum candidate material for TCES application due to its large heat storage capacity complemented by enhanced thermal stability over multiple oxidation/reduction cycles. To advance in the thermal characterization of these materials at a multigram scale, here we carried out bench-scale reactor tests using CMF91 under conditions considered representative of future CSP plants. The redox-active material has been extruded in the form of porous pellets through a simple production method that required the use of carboxymethylcellulose as a removable binder and water. With the bench-scale reactor tests, the CMF91 pellets showed fully reversible reduction-oxidation in cycles between 500 and 1100 °C under relevant operating pO2 conditions without any deterioration of the pellet's structural integrity. Remarkably, the material exhibited the same δ(T, pO2) profile at this significantly larger scale (~40 g) than the one derived from thermodynamics. Nevertheless, slight differences in oxygen release/uptake profiles between cooling and heating branches can be tracked down to an excess heat generation in the perovskite bed not efficiently extracted by the carrier gas. These results demonstrate that CMF91 oxide is ideally suited for thermal energy storage applications with a large total (thermochemical and sensible) heat storage capacity (~ 916 kJ/kgABO3 or ~ 400 kWh/m3) and good scalability. © 2022 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska- Curie grant agreement N◦ 74616. Support of the ACES2030-CM from “Comunidad de Madrid” and European Structural Funds to (P2018/EMT-4319), and the Spanish “Ministerio de Economía y Competitividad” through Research Challenges project ARROPAR-CEX (ENE2015-71254-C3-1-R) are also fully acknowledged. M. S´anchez is grateful to Spanish “Ministerio de Economía y Competitividad” by funding through internship FPI (BES-2016-077031). It is greatly acknowledged the Technical Research Support Unit of the Institute of Catalysis and Petroleum Chemistry (ICP-CSIC). The authors fully appreciate the advice provided by Prof. Pedro Avila and Dr. Raquel Portela from the SpeICat group of ICP-CSIC, about the procedure for pellets preparation. Supporting Information Peer reviewed
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 37 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Italy, SpainPublisher:Elsevier BV Authors:Mastronardo E.;
Sanchez M.;Mastronardo E.
Mastronardo E. in OpenAIREGonzalez-Aguilar J.;
Gonzalez-Aguilar J.
Gonzalez-Aguilar J. in OpenAIRECoronado J. M.;
Coronado J. M.
Coronado J. M. in OpenAIREhandle: 10261/358887 , 11570/3246433
Thermodynamic cycles requiring high operating temperatures (≥750 °C up to 1200 °C) are currently being explored to improve the sun-to-electricity conversion efficiency of Concentrating Solar Power (CSP) plants. This is calling for the design of new efficient high-temperature (≥750 °C) Thermochemical Energy Storage (TCES) systems, which are fundamental for supplying power on demand during off-sun periods. Recently, Fe-doped CaMnO3 oxides have been proposed as TCES candidate materials, and the determination of their thermodynamics properties via thermogravimetric (TG) analysis allowed evaluation of their heat storage capacity at a very small scale (mg scale). A 10 % Fe-doped CaMnO3 composition (CaMn0.9Fe0.1O3-δ – CMF91) emerged as optimum candidate material for TCES application due to its large heat storage capacity complemented by enhanced thermal stability over multiple oxidation/reduction cycles. To advance in the thermal characterization of these materials at a multigram scale, here we carried out bench-scale reactor tests using CMF91 under conditions considered representative of future CSP plants. The redox-active material has been extruded in the form of porous pellets through a simple production method that required the use of carboxymethylcellulose as a removable binder and water. With the bench-scale reactor tests, the CMF91 pellets showed fully reversible reduction-oxidation in cycles between 500 and 1100 °C under relevant operating pO2 conditions without any deterioration of the pellet's structural integrity. Remarkably, the material exhibited the same δ(T, pO2) profile at this significantly larger scale (~40 g) than the one derived from thermodynamics. Nevertheless, slight differences in oxygen release/uptake profiles between cooling and heating branches can be tracked down to an excess heat generation in the perovskite bed not efficiently extracted by the carrier gas. These results demonstrate that CMF91 oxide is ideally suited for thermal energy storage applications with a large total (thermochemical and sensible) heat storage capacity (~ 916 kJ/kgABO3 or ~ 400 kWh/m3) and good scalability. © 2022 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska- Curie grant agreement N◦ 74616. Support of the ACES2030-CM from “Comunidad de Madrid” and European Structural Funds to (P2018/EMT-4319), and the Spanish “Ministerio de Economía y Competitividad” through Research Challenges project ARROPAR-CEX (ENE2015-71254-C3-1-R) are also fully acknowledged. M. S´anchez is grateful to Spanish “Ministerio de Economía y Competitividad” by funding through internship FPI (BES-2016-077031). It is greatly acknowledged the Technical Research Support Unit of the Institute of Catalysis and Petroleum Chemistry (ICP-CSIC). The authors fully appreciate the advice provided by Prof. Pedro Avila and Dr. Raquel Portela from the SpeICat group of ICP-CSIC, about the procedure for pellets preparation. Supporting Information Peer reviewed
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 37 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:Zenodo Funded by:EC | AGROinLOGEC| AGROinLOGPari L; Alfano V; Suardi A; Bergonzoli S; Stefanoni W; Lazar S; Latterini F; Attolico C;Palmieri N;
Mattei P.;Palmieri N
Palmieri N in OpenAIREThis work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5734414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5734414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:Zenodo Funded by:EC | AGROinLOGEC| AGROinLOGPari L; Alfano V; Suardi A; Bergonzoli S; Stefanoni W; Lazar S; Latterini F; Attolico C;Palmieri N;
Mattei P.;Palmieri N
Palmieri N in OpenAIREThis work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5734414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5734414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 ItalyPublisher:MDPI AG Authors:Nabi, Brera Ghulam;
Nabi, Brera Ghulam
Nabi, Brera Ghulam in OpenAIREMukhtar, Kinza;
Arshad, Rai Naveed;Mukhtar, Kinza
Mukhtar, Kinza in OpenAIRERadicetti, Emanuele;
+6 AuthorsRadicetti, Emanuele
Radicetti, Emanuele in OpenAIRENabi, Brera Ghulam;
Nabi, Brera Ghulam
Nabi, Brera Ghulam in OpenAIREMukhtar, Kinza;
Arshad, Rai Naveed;Mukhtar, Kinza
Mukhtar, Kinza in OpenAIRERadicetti, Emanuele;
Tedeschi, Paola;Radicetti, Emanuele
Radicetti, Emanuele in OpenAIREShahbaz, Muhammad Umar;
Shahbaz, Muhammad Umar
Shahbaz, Muhammad Umar in OpenAIREWalayat, Noman;
Walayat, Noman
Walayat, Noman in OpenAIRENawaz, Asad;
Inam-Ur-Raheem, Muhammad;Nawaz, Asad
Nawaz, Asad in OpenAIREAadil, Rana Muhammad;
Aadil, Rana Muhammad
Aadil, Rana Muhammad in OpenAIREdoi: 10.3390/su132413908
handle: 11392/2470313
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 ItalyPublisher:MDPI AG Authors:Nabi, Brera Ghulam;
Nabi, Brera Ghulam
Nabi, Brera Ghulam in OpenAIREMukhtar, Kinza;
Arshad, Rai Naveed;Mukhtar, Kinza
Mukhtar, Kinza in OpenAIRERadicetti, Emanuele;
+6 AuthorsRadicetti, Emanuele
Radicetti, Emanuele in OpenAIRENabi, Brera Ghulam;
Nabi, Brera Ghulam
Nabi, Brera Ghulam in OpenAIREMukhtar, Kinza;
Arshad, Rai Naveed;Mukhtar, Kinza
Mukhtar, Kinza in OpenAIRERadicetti, Emanuele;
Tedeschi, Paola;Radicetti, Emanuele
Radicetti, Emanuele in OpenAIREShahbaz, Muhammad Umar;
Shahbaz, Muhammad Umar
Shahbaz, Muhammad Umar in OpenAIREWalayat, Noman;
Walayat, Noman
Walayat, Noman in OpenAIRENawaz, Asad;
Inam-Ur-Raheem, Muhammad;Nawaz, Asad
Nawaz, Asad in OpenAIREAadil, Rana Muhammad;
Aadil, Rana Muhammad
Aadil, Rana Muhammad in OpenAIREdoi: 10.3390/su132413908
handle: 11392/2470313
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 LuxembourgPublisher:Wiley Authors:Thomas Paul Weiss;
Thomas Paul Weiss
Thomas Paul Weiss in OpenAIREIgnacio Minguez‐Bacho;
Elena Zuccalà;Ignacio Minguez‐Bacho
Ignacio Minguez‐Bacho in OpenAIREMichele Melchiorre;
+7 AuthorsMichele Melchiorre
Michele Melchiorre in OpenAIREThomas Paul Weiss;
Thomas Paul Weiss
Thomas Paul Weiss in OpenAIREIgnacio Minguez‐Bacho;
Elena Zuccalà;Ignacio Minguez‐Bacho
Ignacio Minguez‐Bacho in OpenAIREMichele Melchiorre;
Michele Melchiorre
Michele Melchiorre in OpenAIRENathalie Valle;
Brahime El Adib; Tadahiro Yokosawa; Erdmann Spiecker;Nathalie Valle
Nathalie Valle in OpenAIREJulien Bachmann;
Julien Bachmann
Julien Bachmann in OpenAIREPhillip J. Dale;
Phillip J. Dale
Phillip J. Dale in OpenAIRESusanne Siebentritt;
Susanne Siebentritt
Susanne Siebentritt in OpenAIREdoi: 10.1002/pip.3625
AbstractCurrently, Sb2Se3 thin films receive considerable research interest as a solar cell absorber material. When completed into a device stack, the major bottleneck for further device improvement is the open‐circuit voltage, which is the focus of the work presented here. Polycrystalline thin‐film Sb2Se3 absorbers and solar cells are prepared in substrate configuration and the dominant recombination path is studied using photoluminescence spectroscopy and temperature‐dependent current–voltage characteristics. It is found that a post‐deposition annealing after the CdS buffer layer deposition can effectively remove interface recombination since the activation energy of the dominant recombination path becomes equal to the bandgap of the Sb2Se3 absorber. The increased activation energy is accompanied by an increased photoluminescence yield, that is, reduced non‐radiative recombination. Finished Sb2Se3 solar cell devices reach open‐circuit voltages as high as 485 mV. Contrarily, the short‐circuit current density of these devices is limiting the efficiency after the post‐deposition annealing. It is shown that atomic layer‐deposited intermediate buffer layers such as TiO2 or Sb2S3 can pave the way for overcoming this limitation.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2022Data sources: Open Repository and Bibliography - Luxembourgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2022Data sources: Open Repository and Bibliography - Luxembourgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 LuxembourgPublisher:Wiley Authors:Thomas Paul Weiss;
Thomas Paul Weiss
Thomas Paul Weiss in OpenAIREIgnacio Minguez‐Bacho;
Elena Zuccalà;Ignacio Minguez‐Bacho
Ignacio Minguez‐Bacho in OpenAIREMichele Melchiorre;
+7 AuthorsMichele Melchiorre
Michele Melchiorre in OpenAIREThomas Paul Weiss;
Thomas Paul Weiss
Thomas Paul Weiss in OpenAIREIgnacio Minguez‐Bacho;
Elena Zuccalà;Ignacio Minguez‐Bacho
Ignacio Minguez‐Bacho in OpenAIREMichele Melchiorre;
Michele Melchiorre
Michele Melchiorre in OpenAIRENathalie Valle;
Brahime El Adib; Tadahiro Yokosawa; Erdmann Spiecker;Nathalie Valle
Nathalie Valle in OpenAIREJulien Bachmann;
Julien Bachmann
Julien Bachmann in OpenAIREPhillip J. Dale;
Phillip J. Dale
Phillip J. Dale in OpenAIRESusanne Siebentritt;
Susanne Siebentritt
Susanne Siebentritt in OpenAIREdoi: 10.1002/pip.3625
AbstractCurrently, Sb2Se3 thin films receive considerable research interest as a solar cell absorber material. When completed into a device stack, the major bottleneck for further device improvement is the open‐circuit voltage, which is the focus of the work presented here. Polycrystalline thin‐film Sb2Se3 absorbers and solar cells are prepared in substrate configuration and the dominant recombination path is studied using photoluminescence spectroscopy and temperature‐dependent current–voltage characteristics. It is found that a post‐deposition annealing after the CdS buffer layer deposition can effectively remove interface recombination since the activation energy of the dominant recombination path becomes equal to the bandgap of the Sb2Se3 absorber. The increased activation energy is accompanied by an increased photoluminescence yield, that is, reduced non‐radiative recombination. Finished Sb2Se3 solar cell devices reach open‐circuit voltages as high as 485 mV. Contrarily, the short‐circuit current density of these devices is limiting the efficiency after the post‐deposition annealing. It is shown that atomic layer‐deposited intermediate buffer layers such as TiO2 or Sb2S3 can pave the way for overcoming this limitation.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2022Data sources: Open Repository and Bibliography - Luxembourgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2022Data sources: Open Repository and Bibliography - Luxembourgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020Publisher:Copernicus GmbH Funded by:EC | MEETEC| MEETHerrmann, Johannes; Rybacki, Erik; Wang, Wenxia; Milsch, Harald;Wagner, Bianca;
Leiss, Bernd;Wagner, Bianca
Wagner, Bianca in OpenAIRE<p>Commonly used host rock reservoirs for Enhanced Geothermal Systems (EGS) are composed of granite, as they display highly conductive and sustainable fracture networks after stimulation. However, considering the large amount of metamorphic rocks in Europe&#8217;s underground, these rock types may also show a large potential to extract geothermal energy from the subsurface. Within the framework of the European Union&#8217;s Horizon 2020 initiative &#8216;MEET (Multi-Sites EGS Demonstration)&#8217;, we are conducting fracture permeability experiments at elevated confining pressures, p<sub>c</sub>, temperatures, T, and differential stresses, </p>
https://zenodo.org/r... arrow_drop_down http://dx.doi.org/10.5194/egus...Conference object . 2020Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-8091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert https://zenodo.org/r... arrow_drop_down http://dx.doi.org/10.5194/egus...Conference object . 2020Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-8091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020Publisher:Copernicus GmbH Funded by:EC | MEETEC| MEETHerrmann, Johannes; Rybacki, Erik; Wang, Wenxia; Milsch, Harald;Wagner, Bianca;
Leiss, Bernd;Wagner, Bianca
Wagner, Bianca in OpenAIRE<p>Commonly used host rock reservoirs for Enhanced Geothermal Systems (EGS) are composed of granite, as they display highly conductive and sustainable fracture networks after stimulation. However, considering the large amount of metamorphic rocks in Europe&#8217;s underground, these rock types may also show a large potential to extract geothermal energy from the subsurface. Within the framework of the European Union&#8217;s Horizon 2020 initiative &#8216;MEET (Multi-Sites EGS Demonstration)&#8217;, we are conducting fracture permeability experiments at elevated confining pressures, p<sub>c</sub>, temperatures, T, and differential stresses, </p>
https://zenodo.org/r... arrow_drop_down http://dx.doi.org/10.5194/egus...Conference object . 2020Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-8091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert https://zenodo.org/r... arrow_drop_down http://dx.doi.org/10.5194/egus...Conference object . 2020Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-8091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Authors:Juan Carlos Ríos-Fernández;
Juan Carlos Ríos-Fernández
Juan Carlos Ríos-Fernández in OpenAIREJuan M. González-Caballín;
Juan M. González-Caballín
Juan M. González-Caballín in OpenAIREAndrés Meana-Fernández;
Andrés Meana-Fernández
Andrés Meana-Fernández in OpenAIREMaría José Suárez López;
+1 AuthorsMaría José Suárez López
María José Suárez López in OpenAIREJuan Carlos Ríos-Fernández;
Juan Carlos Ríos-Fernández
Juan Carlos Ríos-Fernández in OpenAIREJuan M. González-Caballín;
Juan M. González-Caballín
Juan M. González-Caballín in OpenAIREAndrés Meana-Fernández;
Andrés Meana-Fernández
Andrés Meana-Fernández in OpenAIREMaría José Suárez López;
María José Suárez López
María José Suárez López in OpenAIREAntonio José Gutiérrez-Trashorras;
Antonio José Gutiérrez-Trashorras
Antonio José Gutiérrez-Trashorras in OpenAIREhandle: 10651/60912
Spain has a high level of energy consumption and CO2 emissions in detached houses, being the lack of an adequate insulation level and efficient energy systems the main causes. The Spanish Government has been performing modifications on its Building Technical Code (BTC) to address this issue, following European Directives. An assessment of the development of the Spanish BTC from its first 2006 version has been conducted in this work. A standard Spanish detached house was placed in the different Spanish climatic zones, designed with the minimum requirements of the 2006 and 2013 BTCs, and was then analyzed using the software Cerma. The results show that energy demand is reduced and the energy rating is improved with the stricter requirements introduced in the 2013 BTC. Although energy demand and CO2 emissions vary significantly among the 13 different climatic zones studied, the BTC modifications allow to reach a minimum energy rating independently of the climatic zone where the house is located. Opaque enclosures and internal loads were found to be the main contributors to building-related emissions. Additionally, possible actions to improve energy rating in detached houses are evaluated, finding that a moderate insulation thickness increase and the installation of heat pumps allow to reach the highest energy rating, being the improvement more apparent in northern and central regions. The results of this work may be extrapolated to other countries with similar climatic conditions to the studied zones, providing guidelines to fulfill energy saving regulations, evaluate emission sources and improve building energy efficiency.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2021Data sources: Repositorio Institucional de la Universidad de OviedoClean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2021Data sources: Repositorio Institucional de la Universidad de OviedoClean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Authors:Juan Carlos Ríos-Fernández;
Juan Carlos Ríos-Fernández
Juan Carlos Ríos-Fernández in OpenAIREJuan M. González-Caballín;
Juan M. González-Caballín
Juan M. González-Caballín in OpenAIREAndrés Meana-Fernández;
Andrés Meana-Fernández
Andrés Meana-Fernández in OpenAIREMaría José Suárez López;
+1 AuthorsMaría José Suárez López
María José Suárez López in OpenAIREJuan Carlos Ríos-Fernández;
Juan Carlos Ríos-Fernández
Juan Carlos Ríos-Fernández in OpenAIREJuan M. González-Caballín;
Juan M. González-Caballín
Juan M. González-Caballín in OpenAIREAndrés Meana-Fernández;
Andrés Meana-Fernández
Andrés Meana-Fernández in OpenAIREMaría José Suárez López;
María José Suárez López
María José Suárez López in OpenAIREAntonio José Gutiérrez-Trashorras;
Antonio José Gutiérrez-Trashorras
Antonio José Gutiérrez-Trashorras in OpenAIREhandle: 10651/60912
Spain has a high level of energy consumption and CO2 emissions in detached houses, being the lack of an adequate insulation level and efficient energy systems the main causes. The Spanish Government has been performing modifications on its Building Technical Code (BTC) to address this issue, following European Directives. An assessment of the development of the Spanish BTC from its first 2006 version has been conducted in this work. A standard Spanish detached house was placed in the different Spanish climatic zones, designed with the minimum requirements of the 2006 and 2013 BTCs, and was then analyzed using the software Cerma. The results show that energy demand is reduced and the energy rating is improved with the stricter requirements introduced in the 2013 BTC. Although energy demand and CO2 emissions vary significantly among the 13 different climatic zones studied, the BTC modifications allow to reach a minimum energy rating independently of the climatic zone where the house is located. Opaque enclosures and internal loads were found to be the main contributors to building-related emissions. Additionally, possible actions to improve energy rating in detached houses are evaluated, finding that a moderate insulation thickness increase and the installation of heat pumps allow to reach the highest energy rating, being the improvement more apparent in northern and central regions. The results of this work may be extrapolated to other countries with similar climatic conditions to the studied zones, providing guidelines to fulfill energy saving regulations, evaluate emission sources and improve building energy efficiency.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2021Data sources: Repositorio Institucional de la Universidad de OviedoClean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2021Data sources: Repositorio Institucional de la Universidad de OviedoClean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Bian, Mingxin;Xu, Zhiheng;
Tang, Xiaobin; Jia, Hongyang; +2 AuthorsXu, Zhiheng
Xu, Zhiheng in OpenAIREBian, Mingxin;Xu, Zhiheng;
Tang, Xiaobin; Jia, Hongyang; Wang, Yuqiao;Xu, Zhiheng
Xu, Zhiheng in OpenAIRECabot, Andreu;
Cabot, Andreu
Cabot, Andreu in OpenAIRETo fulfill the ever-increasing power demands of deep space exploration, the output performance of radioisotope thermoelectric generators, the only accessible power source, must be enhanced in several aspects, including thermoelectric properties of materials, geometry, welding, etc. In this study, we present our results on the development of a novel thermoelectric slurry suitable for the 3D printing of thermoelectric generators with optimized leg geometry. The rheological properties of the slurry are optimized by combining proper amounts of organic solvent, binder, and bismuth telluride-based thermoelectric powder. The addition of Cu to the slurry as a conductive additive are also investigated. The homogeneous dispersion of Cu within the material not only increases the electrical conductivity of the final thermoelectric leg significantly but also promotes the crystallization of the thermoelectric particles during the sintering process. These effects result in 3D-printed thermoelectric composites exhibiting ZT values up to 0.91 and extended optimum operating temperature range. Thermoelectric modules composed of 3D-printed thermoelectric legs show excellent output performance and structural strength. This work could also produce other special shaped thermoelectric devices to match irregularly shaped heat sources to reduce contact heat loss and improve output performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2023.173202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2023.173202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Bian, Mingxin;Xu, Zhiheng;
Tang, Xiaobin; Jia, Hongyang; +2 AuthorsXu, Zhiheng
Xu, Zhiheng in OpenAIREBian, Mingxin;Xu, Zhiheng;
Tang, Xiaobin; Jia, Hongyang; Wang, Yuqiao;Xu, Zhiheng
Xu, Zhiheng in OpenAIRECabot, Andreu;
Cabot, Andreu
Cabot, Andreu in OpenAIRETo fulfill the ever-increasing power demands of deep space exploration, the output performance of radioisotope thermoelectric generators, the only accessible power source, must be enhanced in several aspects, including thermoelectric properties of materials, geometry, welding, etc. In this study, we present our results on the development of a novel thermoelectric slurry suitable for the 3D printing of thermoelectric generators with optimized leg geometry. The rheological properties of the slurry are optimized by combining proper amounts of organic solvent, binder, and bismuth telluride-based thermoelectric powder. The addition of Cu to the slurry as a conductive additive are also investigated. The homogeneous dispersion of Cu within the material not only increases the electrical conductivity of the final thermoelectric leg significantly but also promotes the crystallization of the thermoelectric particles during the sintering process. These effects result in 3D-printed thermoelectric composites exhibiting ZT values up to 0.91 and extended optimum operating temperature range. Thermoelectric modules composed of 3D-printed thermoelectric legs show excellent output performance and structural strength. This work could also produce other special shaped thermoelectric devices to match irregularly shaped heat sources to reduce contact heat loss and improve output performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2023.173202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2023.173202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Authors:Nam-Gyu Park;
Nam-Gyu Park
Nam-Gyu Park in OpenAIREJoseph J. Berry;
Joseph J. Berry
Joseph J. Berry in OpenAIREMuriel Matheron;
Jeff Kettle; +64 AuthorsMuriel Matheron
Muriel Matheron in OpenAIRENam-Gyu Park;
Nam-Gyu Park
Nam-Gyu Park in OpenAIREJoseph J. Berry;
Joseph J. Berry
Joseph J. Berry in OpenAIREMuriel Matheron;
Jeff Kettle;Muriel Matheron
Muriel Matheron in OpenAIREYulia Galagan;
Francesca De Rossi; Francesca De Rossi;Yulia Galagan
Yulia Galagan in OpenAIREHarald Hoppe;
Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim;Harald Hoppe
Harald Hoppe in OpenAIRESjoerd Veenstra;
Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov;Sjoerd Veenstra
Sjoerd Veenstra in OpenAIREMark V. Khenkin;
Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee;Mark V. Khenkin
Mark V. Khenkin in OpenAIREDiego Di Girolamo;
Diego Di Girolamo; Aron Walsh; Aron Walsh;Diego Di Girolamo
Diego Di Girolamo in OpenAIREFrancesca Brunetti;
Marina S. Leite; Marina S. Leite; Giorgio Bardizza;Francesca Brunetti
Francesca Brunetti in OpenAIREMohammad Khaja Nazeeruddin;
Antonio Abate; Shaik M. Zakeeruddin;Mohammad Khaja Nazeeruddin
Mohammad Khaja Nazeeruddin in OpenAIREEugene A. Katz;
Michał Dusza; Chang-Qi Ma;Eugene A. Katz
Eugene A. Katz in OpenAIREIris Visoly-Fisher;
Iris Visoly-Fisher
Iris Visoly-Fisher in OpenAIREMichael Saliba;
Michael Saliba;Michael Saliba
Michael Saliba in OpenAIREHans Köbler;
Hans Köbler
Hans Köbler in OpenAIREAldo Di Carlo;
Aldo Di Carlo
Aldo Di Carlo in OpenAIREStéphane Cros;
Anders Hagfeldt; Matthieu Manceau; Michael Grätzel;Stéphane Cros
Stéphane Cros in OpenAIREçaǧla Odabaşı;
çaǧla Odabaşı
çaǧla Odabaşı in OpenAIREElizabeth von Hauff;
Elizabeth von Hauff
Elizabeth von Hauff in OpenAIRERongrong Cheacharoen;
Rongrong Cheacharoen
Rongrong Cheacharoen in OpenAIREQuinn Burlingame;
Quinn Burlingame
Quinn Burlingame in OpenAIREVida Turkovic;
Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu;Vida Turkovic
Vida Turkovic in OpenAIREMorten Madsen;
Kai Zhu;Morten Madsen
Morten Madsen in OpenAIREAlexander Colsmann;
Alexander Colsmann
Alexander Colsmann in OpenAIREStephen R. Forrest;
Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec;Stephen R. Forrest
Stephen R. Forrest in OpenAIREHenry J. Snaith;
Henry J. Snaith
Henry J. Snaith in OpenAIREWolfgang Tress;
Wolfgang Tress
Wolfgang Tress in OpenAIREPavel A. Troshin;
Pavel A. Troshin
Pavel A. Troshin in OpenAIREChristopher J. Fell;
Matthew O. Reese;Christopher J. Fell
Christopher J. Fell in OpenAIREAbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Authors:Nam-Gyu Park;
Nam-Gyu Park
Nam-Gyu Park in OpenAIREJoseph J. Berry;
Joseph J. Berry
Joseph J. Berry in OpenAIREMuriel Matheron;
Jeff Kettle; +64 AuthorsMuriel Matheron
Muriel Matheron in OpenAIRENam-Gyu Park;
Nam-Gyu Park
Nam-Gyu Park in OpenAIREJoseph J. Berry;
Joseph J. Berry
Joseph J. Berry in OpenAIREMuriel Matheron;
Jeff Kettle;Muriel Matheron
Muriel Matheron in OpenAIREYulia Galagan;
Francesca De Rossi; Francesca De Rossi;Yulia Galagan
Yulia Galagan in OpenAIREHarald Hoppe;
Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim;Harald Hoppe
Harald Hoppe in OpenAIRESjoerd Veenstra;
Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov;Sjoerd Veenstra
Sjoerd Veenstra in OpenAIREMark V. Khenkin;
Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee;Mark V. Khenkin
Mark V. Khenkin in OpenAIREDiego Di Girolamo;
Diego Di Girolamo; Aron Walsh; Aron Walsh;Diego Di Girolamo
Diego Di Girolamo in OpenAIREFrancesca Brunetti;
Marina S. Leite; Marina S. Leite; Giorgio Bardizza;Francesca Brunetti
Francesca Brunetti in OpenAIREMohammad Khaja Nazeeruddin;
Antonio Abate; Shaik M. Zakeeruddin;Mohammad Khaja Nazeeruddin
Mohammad Khaja Nazeeruddin in OpenAIREEugene A. Katz;
Michał Dusza; Chang-Qi Ma;Eugene A. Katz
Eugene A. Katz in OpenAIREIris Visoly-Fisher;
Iris Visoly-Fisher
Iris Visoly-Fisher in OpenAIREMichael Saliba;
Michael Saliba;Michael Saliba
Michael Saliba in OpenAIREHans Köbler;
Hans Köbler
Hans Köbler in OpenAIREAldo Di Carlo;
Aldo Di Carlo
Aldo Di Carlo in OpenAIREStéphane Cros;
Anders Hagfeldt; Matthieu Manceau; Michael Grätzel;Stéphane Cros
Stéphane Cros in OpenAIREçaǧla Odabaşı;
çaǧla Odabaşı
çaǧla Odabaşı in OpenAIREElizabeth von Hauff;
Elizabeth von Hauff
Elizabeth von Hauff in OpenAIRERongrong Cheacharoen;
Rongrong Cheacharoen
Rongrong Cheacharoen in OpenAIREQuinn Burlingame;
Quinn Burlingame
Quinn Burlingame in OpenAIREVida Turkovic;
Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu;Vida Turkovic
Vida Turkovic in OpenAIREMorten Madsen;
Kai Zhu;Morten Madsen
Morten Madsen in OpenAIREAlexander Colsmann;
Alexander Colsmann
Alexander Colsmann in OpenAIREStephen R. Forrest;
Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec;Stephen R. Forrest
Stephen R. Forrest in OpenAIREHenry J. Snaith;
Henry J. Snaith
Henry J. Snaith in OpenAIREWolfgang Tress;
Wolfgang Tress
Wolfgang Tress in OpenAIREPavel A. Troshin;
Pavel A. Troshin
Pavel A. Troshin in OpenAIREChristopher J. Fell;
Matthew O. Reese;Christopher J. Fell
Christopher J. Fell in OpenAIREAbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | THINFACEEC| THINFACEAuthors:Lidón Gil-Escrig;
Henk J. Bolink;Lidón Gil-Escrig
Lidón Gil-Escrig in OpenAIREMichele Sessolo;
Samrana Kazim; +4 AuthorsMichele Sessolo
Michele Sessolo in OpenAIRELidón Gil-Escrig;
Henk J. Bolink;Lidón Gil-Escrig
Lidón Gil-Escrig in OpenAIREMichele Sessolo;
Samrana Kazim;Michele Sessolo
Michele Sessolo in OpenAIREÁngela Sastre-Santos;
Ángela Sastre-Santos
Ángela Sastre-Santos in OpenAIRECristina Momblona;
Shahzada Ahmad;Cristina Momblona
Cristina Momblona in OpenAIRELaura Caliò;
Laura Caliò
Laura Caliò in OpenAIREAbstract Planar perovskite solar cells using organic charge selective contacts were fabricated. In a vacuum deposited perovskite-based solar cell, dopant and additive free triazatruxene as the hole transport layer was introduced for device fabrication. High open-circuit voltage of 1090 mV was obtained using methylammonium lead iodide (Eg=1.55 eV) as light harvesting material, thus representing a loss of only 460 mV which is in close vicinity of mature silicon technology (400 mV). The devices showed a very competitive photovoltaic performance, monochromatic incident photon-to-electron conversion efficiency of 80% and the power conversion efficiencies in excess of 15% were measured with a negligible degree of hysteresis.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | THINFACEEC| THINFACEAuthors:Lidón Gil-Escrig;
Henk J. Bolink;Lidón Gil-Escrig
Lidón Gil-Escrig in OpenAIREMichele Sessolo;
Samrana Kazim; +4 AuthorsMichele Sessolo
Michele Sessolo in OpenAIRELidón Gil-Escrig;
Henk J. Bolink;Lidón Gil-Escrig
Lidón Gil-Escrig in OpenAIREMichele Sessolo;
Samrana Kazim;Michele Sessolo
Michele Sessolo in OpenAIREÁngela Sastre-Santos;
Ángela Sastre-Santos
Ángela Sastre-Santos in OpenAIRECristina Momblona;
Shahzada Ahmad;Cristina Momblona
Cristina Momblona in OpenAIRELaura Caliò;
Laura Caliò
Laura Caliò in OpenAIREAbstract Planar perovskite solar cells using organic charge selective contacts were fabricated. In a vacuum deposited perovskite-based solar cell, dopant and additive free triazatruxene as the hole transport layer was introduced for device fabrication. High open-circuit voltage of 1090 mV was obtained using methylammonium lead iodide (Eg=1.55 eV) as light harvesting material, thus representing a loss of only 460 mV which is in close vicinity of mature silicon technology (400 mV). The devices showed a very competitive photovoltaic performance, monochromatic incident photon-to-electron conversion efficiency of 80% and the power conversion efficiencies in excess of 15% were measured with a negligible degree of hysteresis.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu