- home
- Search
- Energy Research
- Open Source
- Embargo
- ES
- EU
- FR
- Energy Research
- Open Source
- Embargo
- ES
- EU
- FR
description Publicationkeyboard_double_arrow_right Master thesis 2025 SpainPublisher:Universitat Politècnica de Catalunya Authors: Mosaferi, Armin;handle: 2117/428314
This master thesis explores the integration of Artificial Intelligence (AI) in Environmental, Social, and Governance (ESG) reporting, focusing on its potential to enhance the accuracy, transparency, and efficiency of ESG disclosures. It investigates how AI can transform ESG reporting from a reactive to a proactive tool, enabling companies to better assess and mitigate ESG-related risks. The study examines the perceptions of industry professionals regarding AI's role in ESG, considering factors such as age, education, and professional background. It highlights the significant impact AI can have on sectors like finance, energy, and healthcare, while addressing challenges and ethical concerns. The findings suggest that AI can be a powerful enabler of ESG transparency, but its adoption requires sector-specific adaptations and careful ethical considerations. Future research is recommended to explore long-term effects and deeper ethical issues in AI-driven ESG reporting. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::16 - Pau, Justícia i Institucions Sòlides
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCMaster thesis . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/428314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCMaster thesis . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/428314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Gil Gómez, Irene;handle: 2117/414734
Objectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.6 - Per a 2030, reduir l’impacte ambiental negatiu per capita de les ciutats, amb especial atenció a la qualitat de l’aire, així com a la gestió dels residus municipals i d’altre tipus 2n Premi Domènec Valero 2024 Award-winning
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;handle: 2117/418291
The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:Elsevier BV Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; Presas Batlló, Alexandre; Tang, Fangping; Lu, Yonggang;handle: 2117/426651
Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:Elsevier BV Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;handle: 2117/427490
The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; Carlos Ramos;handle: 2117/428221
AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025Data sources: UPCommons. Portal del coneixement obert de la UPCBiofuels Bioproducts and BiorefiningArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4688209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025Data sources: UPCommons. Portal del coneixement obert de la UPCBiofuels Bioproducts and BiorefiningArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4688209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Sánchez Ballesta, Anna;handle: 2117/414398
La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAMaster thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCMaster thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAMaster thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCMaster thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Sala Siso, Roger;handle: 2117/413204
With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/413204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 42visibility views 42 download downloads 34 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/413204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2024Embargo end date: 01 Oct 2025 SpainPublisher:Universitat de Barcelona Authors: Gong, Li;handle: 10803/692509 , 2445/216388
[eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia
Tesis Doctorals en X... arrow_drop_down Tesis Doctorals en XarxaDoctoral thesis . 2024License: CC BY NC NDData sources: Tesis Doctorals en XarxaDiposit Digital de la Universitat de BarcelonaDoctoral thesis . 2024License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10803/692509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 93visibility views 93 download downloads 17 Powered bymore_vert Tesis Doctorals en X... arrow_drop_down Tesis Doctorals en XarxaDoctoral thesis . 2024License: CC BY NC NDData sources: Tesis Doctorals en XarxaDiposit Digital de la Universitat de BarcelonaDoctoral thesis . 2024License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10803/692509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Master thesis 2025 SpainPublisher:Universitat Politècnica de Catalunya Authors: Mosaferi, Armin;handle: 2117/428314
This master thesis explores the integration of Artificial Intelligence (AI) in Environmental, Social, and Governance (ESG) reporting, focusing on its potential to enhance the accuracy, transparency, and efficiency of ESG disclosures. It investigates how AI can transform ESG reporting from a reactive to a proactive tool, enabling companies to better assess and mitigate ESG-related risks. The study examines the perceptions of industry professionals regarding AI's role in ESG, considering factors such as age, education, and professional background. It highlights the significant impact AI can have on sectors like finance, energy, and healthcare, while addressing challenges and ethical concerns. The findings suggest that AI can be a powerful enabler of ESG transparency, but its adoption requires sector-specific adaptations and careful ethical considerations. Future research is recommended to explore long-term effects and deeper ethical issues in AI-driven ESG reporting. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::16 - Pau, Justícia i Institucions Sòlides
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCMaster thesis . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/428314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCMaster thesis . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/428314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Gil Gómez, Irene;handle: 2117/414734
Objectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.6 - Per a 2030, reduir l’impacte ambiental negatiu per capita de les ciutats, amb especial atenció a la qualitat de l’aire, així com a la gestió dels residus municipals i d’altre tipus 2n Premi Domènec Valero 2024 Award-winning
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;handle: 2117/418291
The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:Elsevier BV Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; Presas Batlló, Alexandre; Tang, Fangping; Lu, Yonggang;handle: 2117/426651
Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:Elsevier BV Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;handle: 2117/427490
The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; Carlos Ramos;handle: 2117/428221
AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.
UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025Data sources: UPCommons. Portal del coneixement obert de la UPCBiofuels Bioproducts and BiorefiningArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4688209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UPCommons. Portal de... arrow_drop_down UPCommons. Portal del coneixement obert de la UPCArticle . 2025Data sources: UPCommons. Portal del coneixement obert de la UPCBiofuels Bioproducts and BiorefiningArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4688209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Sánchez Ballesta, Anna;handle: 2117/414398
La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAMaster thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCMaster thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAMaster thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCMaster thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/414398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2024 SpainPublisher:Universitat Politècnica de Catalunya Authors: Sala Siso, Roger;handle: 2117/413204
With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/413204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 42visibility views 42 download downloads 34 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2024Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/413204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2024Embargo end date: 01 Oct 2025 SpainPublisher:Universitat de Barcelona Authors: Gong, Li;handle: 10803/692509 , 2445/216388
[eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia
Tesis Doctorals en X... arrow_drop_down Tesis Doctorals en XarxaDoctoral thesis . 2024License: CC BY NC NDData sources: Tesis Doctorals en XarxaDiposit Digital de la Universitat de BarcelonaDoctoral thesis . 2024License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10803/692509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 93visibility views 93 download downloads 17 Powered bymore_vert Tesis Doctorals en X... arrow_drop_down Tesis Doctorals en XarxaDoctoral thesis . 2024License: CC BY NC NDData sources: Tesis Doctorals en XarxaDiposit Digital de la Universitat de BarcelonaDoctoral thesis . 2024License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTADoctoral thesis . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10803/692509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu