- home
- Search
- Energy Research
- Open Access
- Open Source
- US
- ES
- Energy Research
- Open Access
- Open Source
- US
- ES
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Geiger, Katja; Rivera, Antonella; Aguión, Alba; Barbier, Marine; Cruz, Teresa; Fandiño, Susana; García-Flórez, Lucía; Macho, Gonzalo; Neves, Francisco; Penteado, Nélia; Peón Torre, Paloma; Thiébaut, Eric; Vázquez, Elsa; Acuña, José Luis;Survey data used in a perception study of stalked barnacle harvesters on the effectiveness of fisheries management practices in Spain, Portugal and France. Harvesters from the following six regions along the Atlantic Arc participated: Morbihan in Brittany (France), Asturias-East, Asturias-West and Galicia (Spain), the Reserva Natural das Berlengas (RNB; Portugal) and the Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV; Portugal). We administered 184 surveys from October 2019 to September 2020 and each region was treated as an independent population. The data includes: general demographic data (Region, Age, Gender, Level of Education, Main income source, Years of Experience); perception data of the effectiveness of the currently implemented management strategies in each region (coded: e_name_of_strategy – using Likert Scale with scores ranging from 1 = completely ineffective to 5 = very effective); data of the willingness for change of the currently implemented management (Yes, No, NA); and data of harvesters’ perceptions regarding the most important strategy to achieve sustainability in the fishery. Because the surveys were conducted both before and during the Covid-19 pandemic (the column Covid indicates whether the data was collected before or during the pandemic), we had to make adjustments in our data collection methods. We provided the following options for survey completion (see the Recollection_of_data column): by hand in a written format, online, or via an oral interview conducted with the assistance of a scientist per telephone. Our results indicate that the majority of harvesters in the regions in Portugal and France were willing to make changes to current management strategies, reflecting their awareness of the need for improvement. Based on the AIC model selection analysis results, the model with the single variable region explained 83% of the cumulative model weight. The variable region was the best predictor of the trends in management strategy preferences, and presented a highly significant goodness-of-fit result (p<0.001), suggesting that regional differences play a significant role in shaping these preferences. No clear trend emerged regarding a single "optimal" management strategy preferred by harvesters across regions. Harvesters in less developed co-management systems favored general input and output restrictions and expressed a desire for greater involvement in co-management processes. Conversely, harvesters in highly developed co-management systems with Territorial User Rights for Fishers (TURFs) preferred the most restrictive and spatially explicit management strategies, such as implementing harvest bans and establishing marine reserves. Our findings emphasise that management strategies do not only need to be tailored to each region's particular practices, needs, and characteristics, but that resource users’ readiness for specific strategies also needs to be considered.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017 United States, KazakhstanAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::23a296426e0d937e5e07345ec2da3ab7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::23a296426e0d937e5e07345ec2da3ab7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017 1W, Kazakhstan, United States, United StatesAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::1e24f2cddfbdf709d9addc04c16348f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::1e24f2cddfbdf709d9addc04c16348f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Dam, Hans G.; Baumann, Hannes; Finiguerra, Michael; Pespeni, Melissa; Brennan, Reid;These data include population fitness measurements collected for Acartia hudsonica during multigenerational exposure to ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) including a benign ambient condition temperature and CO2 control (AM).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:The Smithsonian Institution Authors: Paton, Steve;doi: 10.25573/data.10059476.v9 , 10.25573/data.10059476.v35 , 10.25573/data.10059476.v24 , 10.25573/data.10059476.v22 , 10.25573/data.10059476.v26 , 10.25573/data.10059476.v1 , 10.25573/data.10059476.v25 , 10.25573/data.10059476.v38 , 10.25573/data.10059476.v34 , 10.25573/data.10059476.v31 , 10.25573/data.10059476.v12 , 10.25573/data.10059476.v14 , 10.25573/data.10059476.v23 , 10.25573/data.10059476.v21 , 10.25573/data.10059476.v28 , 10.25573/data.10059476.v17 , 10.25573/data.10059476.v11 , 10.25573/data.10059476.v20 , 10.25573/data.10059476.v27 , 10.25573/data.10059476.v7 , 10.25573/data.10059476.v13 , 10.25573/data.10059476.v10 , 10.25573/data.10059476.v2 , 10.25573/data.10059476.v8 , 10.25573/data.10059476.v3 , 10.25573/data.10059476.v37 , 10.25573/data.10059476.v16 , 10.25573/data.10059476.v33 , 10.25573/data.10059476.v5 , 10.25573/data.10059476.v32 , 10.25573/data.10059476.v6 , 10.25573/data.10059476.v15 , 10.25573/data.10059476.v18 , 10.25573/data.10059476.v4 , 10.25573/data.10059476.v19 , 10.25573/data.10059476.v36 , 10.25573/data.10059476
doi: 10.25573/data.10059476.v9 , 10.25573/data.10059476.v35 , 10.25573/data.10059476.v24 , 10.25573/data.10059476.v22 , 10.25573/data.10059476.v26 , 10.25573/data.10059476.v1 , 10.25573/data.10059476.v25 , 10.25573/data.10059476.v38 , 10.25573/data.10059476.v34 , 10.25573/data.10059476.v31 , 10.25573/data.10059476.v12 , 10.25573/data.10059476.v14 , 10.25573/data.10059476.v23 , 10.25573/data.10059476.v21 , 10.25573/data.10059476.v28 , 10.25573/data.10059476.v17 , 10.25573/data.10059476.v11 , 10.25573/data.10059476.v20 , 10.25573/data.10059476.v27 , 10.25573/data.10059476.v7 , 10.25573/data.10059476.v13 , 10.25573/data.10059476.v10 , 10.25573/data.10059476.v2 , 10.25573/data.10059476.v8 , 10.25573/data.10059476.v3 , 10.25573/data.10059476.v37 , 10.25573/data.10059476.v16 , 10.25573/data.10059476.v33 , 10.25573/data.10059476.v5 , 10.25573/data.10059476.v32 , 10.25573/data.10059476.v6 , 10.25573/data.10059476.v15 , 10.25573/data.10059476.v18 , 10.25573/data.10059476.v4 , 10.25573/data.10059476.v19 , 10.25573/data.10059476.v36 , 10.25573/data.10059476
Monthly and daily summary from the Fortuna Station (Centro de Investigaciones Jorge L. Arauz)Location: 8° 43.340'N, 82° 14.241'WParameters: air temperature, wind speed and direction, precipitation, solar radiation (pyranometer)Located in the highlands of the Chiriqui Province, in western Panama.There are three sensor locations: north clearing, south clearing, and a 15m tower.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25573/data.10059476.v9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25573/data.10059476.v9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Clinical Trial 2020 United StatesPublisher:ClinicalTrials.org Approximately 11,000 Veterans present to a VAMC annually with an acute ischemic stroke or TIA. The cornerstone of secondary stroke/TIA prevention includes delivering timely, guideline-concordant vascular risk factor management. Over the past decade, OSA has been recognized as a potent, underdiagnosed, and inadequately treated cerebrovascular risk factor. OSA is very common among patients with stroke/TIA with a prevalence of 70-80%. Despite being highly prevalent, 70-80% of patients with OSA are neither diagnosed nor treated. Untreated OSA has been associated with poor outcomes among patients with cerebrovascular disease including higher mortality and worse functional status. The mainstay of OSA therapy is positive airway pressure (PAP). PAP reduces recurrent vascular events, improves neurological symptoms and functional status among stroke/TIA patients with OSA. The evidence favoring neurological recovery is strongest when interventions are applied early post-stroke/TIA. Guidelines recommend diagnosing and treating OSA for stroke and TIA patients; however, within VHA, very few stroke or TIA patients receive OSA screening. This guideline recommendation was informed in part by clinical trials utilizing an acute OSA assessment protocol developed and implemented by the investigators' group. To address the observed gap in care, the investigators propose a Hybrid Type I, randomized, stepped-wedge trial at 6 VAMCs to increase the rate of timely, guideline-concordant diagnosis and treatment of OSA among Veterans with ischemic stroke/TIA and thereby reduce recurrent vascular events and hospital readmissions. The investigators will identify matched control sites for each ASAP implementation site to examine temporal trends in outcomes among non-intervention sites. For example, the investigators will use administrative data to examine the use of polysomnography across stroke/TIA patients in the VA system and compare changes in matched controls versus the intervention sites on the diagnostic rate. The same adjustment approach will be used for ASAP intervention sites and for control sites. Effectively identifying and treating risk factors for ischemic stroke and transient ischemic attack (TIA) is important to patients, their family members, and healthcare systems. While obstructive sleep apnea (OSA) is a known risk factor for stroke and TIA that is present in more than 70% of stroke/TIA survivors, testing for OSA is infrequently performed for patients and within healthcare systems. The Addressing Sleep Apnea Post-Stroke/TIA (ASAP) study intends to improve rates of guideline-recommended OSA testing and treatment through local quality improvement initiatives (QI) conducted within and across 6 VA Medical Centers. ASAP will also determine the impact of these local QI initiatives on rates of OSA diagnosis, OSA treatment, treatment adherence, recurrent vascular events, and hospital readmissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3111dacbab5::7ce0b137e627cd033ffb0021e039e397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3111dacbab5::7ce0b137e627cd033ffb0021e039e397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Jorgenson, Karen; Hotaling, Scott; Tronstad, Lusha; Finn, Debra; Collins, Sarah;Data and code necessary to replicate the findings from the manuscript titled "Hydrology and trophic flexibility structure alpine stream food webs in the Teton Range, Wyoming, USA". Abstract: Understanding biotic interactions and how they vary across habitats is important for assessing the vulnerability of communities to climate change. Receding glaciers in high mountain areas can lead to the hydrologic homogenization of streams and reduce habitat heterogeneity, which are predicted to drive declines in regional diversity and imperil endemic species. However, little is known about food web structure in alpine stream habitats, particularly among streams fed by different hydrologic sources (e.g., glaciers or snowfields). We used gut content and stable isotope analyses to characterize food web structure of alpine macroinvertebrate communities in streams fed by glaciers, subterranean ice, and seasonal snowpack in the Teton Range, Wyoming, USA. Specifically, we sought to: (1) assess community resource use among streams fed by different hydrologic sources; (2) explore how variability in resource use relates to feeding strategies; and (3) identify which environmental variables influenced resource use within communities. Average taxa diet differed among all hydrologic sources, and food webs in subterranean ice-fed streams were largely supported by the gold alga Hydrurus. This finding bolsters a hypothesis that streams fed by subterranean ice may provide key habitat for cold-water species under climate change by maintaining a longer growing season for this high-quality food resource. While a range of environmental variables associated with hydrologic source (e.g., stream temperature) were related to diet composition, hydrologic source categories explained the most variation in diet composition models. Less variable diets within versus among streams suggests high trophic flexibility, which was further supported by high levels of omnivory. This inherent trophic flexibility may bolster alpine stream communities against future changes in resource availability as the mountain cryosphere fades. Ultimately, our results expand understanding of the habitat requirements for imperiled alpine taxa while empowering predictions of their vulnerability under climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13826656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13826656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Geiger, Katja; Rivera, Antonella; Aguión, Alba; Barbier, Marine; Cruz, Teresa; Fandiño, Susana; García-Flórez, Lucía; Macho, Gonzalo; Neves, Francisco; Penteado, Nélia; Peón Torre, Paloma; Thiébaut, Eric; Vázquez, Elsa; Acuña, José Luis;Survey data used in a perception study of stalked barnacle harvesters on the effectiveness of fisheries management practices in Spain, Portugal and France. Harvesters from the following six regions along the Atlantic Arc participated: Morbihan in Brittany (France), Asturias-East, Asturias-West and Galicia (Spain), the Reserva Natural das Berlengas (RNB; Portugal) and the Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV; Portugal). We administered 184 surveys from October 2019 to September 2020 and each region was treated as an independent population. The data includes: general demographic data (Region, Age, Gender, Level of Education, Main income source, Years of Experience); perception data of the effectiveness of the currently implemented management strategies in each region (coded: e_name_of_strategy – using Likert Scale with scores ranging from 1 = completely ineffective to 5 = very effective); data of the willingness for change of the currently implemented management (Yes, No, NA); and data of harvesters’ perceptions regarding the most important strategy to achieve sustainability in the fishery. Because the surveys were conducted both before and during the Covid-19 pandemic (the column Covid indicates whether the data was collected before or during the pandemic), we had to make adjustments in our data collection methods. We provided the following options for survey completion (see the Recollection_of_data column): by hand in a written format, online, or via an oral interview conducted with the assistance of a scientist per telephone. Our results indicate that the majority of harvesters in the regions in Portugal and France were willing to make changes to current management strategies, reflecting their awareness of the need for improvement. Based on the AIC model selection analysis results, the model with the single variable region explained 83% of the cumulative model weight. The variable region was the best predictor of the trends in management strategy preferences, and presented a highly significant goodness-of-fit result (p<0.001), suggesting that regional differences play a significant role in shaping these preferences. No clear trend emerged regarding a single "optimal" management strategy preferred by harvesters across regions. Harvesters in less developed co-management systems favored general input and output restrictions and expressed a desire for greater involvement in co-management processes. Conversely, harvesters in highly developed co-management systems with Territorial User Rights for Fishers (TURFs) preferred the most restrictive and spatially explicit management strategies, such as implementing harvest bans and establishing marine reserves. Our findings emphasise that management strategies do not only need to be tailored to each region's particular practices, needs, and characteristics, but that resource users’ readiness for specific strategies also needs to be considered.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017 United States, KazakhstanAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::23a296426e0d937e5e07345ec2da3ab7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::23a296426e0d937e5e07345ec2da3ab7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017 1W, Kazakhstan, United States, United StatesAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::1e24f2cddfbdf709d9addc04c16348f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3ba4f6876af::1e24f2cddfbdf709d9addc04c16348f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Dam, Hans G.; Baumann, Hannes; Finiguerra, Michael; Pespeni, Melissa; Brennan, Reid;These data include population fitness measurements collected for Acartia hudsonica during multigenerational exposure to ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) including a benign ambient condition temperature and CO2 control (AM).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:The Smithsonian Institution Authors: Paton, Steve;doi: 10.25573/data.10059476.v9 , 10.25573/data.10059476.v35 , 10.25573/data.10059476.v24 , 10.25573/data.10059476.v22 , 10.25573/data.10059476.v26 , 10.25573/data.10059476.v1 , 10.25573/data.10059476.v25 , 10.25573/data.10059476.v38 , 10.25573/data.10059476.v34 , 10.25573/data.10059476.v31 , 10.25573/data.10059476.v12 , 10.25573/data.10059476.v14 , 10.25573/data.10059476.v23 , 10.25573/data.10059476.v21 , 10.25573/data.10059476.v28 , 10.25573/data.10059476.v17 , 10.25573/data.10059476.v11 , 10.25573/data.10059476.v20 , 10.25573/data.10059476.v27 , 10.25573/data.10059476.v7 , 10.25573/data.10059476.v13 , 10.25573/data.10059476.v10 , 10.25573/data.10059476.v2 , 10.25573/data.10059476.v8 , 10.25573/data.10059476.v3 , 10.25573/data.10059476.v37 , 10.25573/data.10059476.v16 , 10.25573/data.10059476.v33 , 10.25573/data.10059476.v5 , 10.25573/data.10059476.v32 , 10.25573/data.10059476.v6 , 10.25573/data.10059476.v15 , 10.25573/data.10059476.v18 , 10.25573/data.10059476.v4 , 10.25573/data.10059476.v19 , 10.25573/data.10059476.v36 , 10.25573/data.10059476
doi: 10.25573/data.10059476.v9 , 10.25573/data.10059476.v35 , 10.25573/data.10059476.v24 , 10.25573/data.10059476.v22 , 10.25573/data.10059476.v26 , 10.25573/data.10059476.v1 , 10.25573/data.10059476.v25 , 10.25573/data.10059476.v38 , 10.25573/data.10059476.v34 , 10.25573/data.10059476.v31 , 10.25573/data.10059476.v12 , 10.25573/data.10059476.v14 , 10.25573/data.10059476.v23 , 10.25573/data.10059476.v21 , 10.25573/data.10059476.v28 , 10.25573/data.10059476.v17 , 10.25573/data.10059476.v11 , 10.25573/data.10059476.v20 , 10.25573/data.10059476.v27 , 10.25573/data.10059476.v7 , 10.25573/data.10059476.v13 , 10.25573/data.10059476.v10 , 10.25573/data.10059476.v2 , 10.25573/data.10059476.v8 , 10.25573/data.10059476.v3 , 10.25573/data.10059476.v37 , 10.25573/data.10059476.v16 , 10.25573/data.10059476.v33 , 10.25573/data.10059476.v5 , 10.25573/data.10059476.v32 , 10.25573/data.10059476.v6 , 10.25573/data.10059476.v15 , 10.25573/data.10059476.v18 , 10.25573/data.10059476.v4 , 10.25573/data.10059476.v19 , 10.25573/data.10059476.v36 , 10.25573/data.10059476
Monthly and daily summary from the Fortuna Station (Centro de Investigaciones Jorge L. Arauz)Location: 8° 43.340'N, 82° 14.241'WParameters: air temperature, wind speed and direction, precipitation, solar radiation (pyranometer)Located in the highlands of the Chiriqui Province, in western Panama.There are three sensor locations: north clearing, south clearing, and a 15m tower.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25573/data.10059476.v9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25573/data.10059476.v9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Clinical Trial 2020 United StatesPublisher:ClinicalTrials.org Approximately 11,000 Veterans present to a VAMC annually with an acute ischemic stroke or TIA. The cornerstone of secondary stroke/TIA prevention includes delivering timely, guideline-concordant vascular risk factor management. Over the past decade, OSA has been recognized as a potent, underdiagnosed, and inadequately treated cerebrovascular risk factor. OSA is very common among patients with stroke/TIA with a prevalence of 70-80%. Despite being highly prevalent, 70-80% of patients with OSA are neither diagnosed nor treated. Untreated OSA has been associated with poor outcomes among patients with cerebrovascular disease including higher mortality and worse functional status. The mainstay of OSA therapy is positive airway pressure (PAP). PAP reduces recurrent vascular events, improves neurological symptoms and functional status among stroke/TIA patients with OSA. The evidence favoring neurological recovery is strongest when interventions are applied early post-stroke/TIA. Guidelines recommend diagnosing and treating OSA for stroke and TIA patients; however, within VHA, very few stroke or TIA patients receive OSA screening. This guideline recommendation was informed in part by clinical trials utilizing an acute OSA assessment protocol developed and implemented by the investigators' group. To address the observed gap in care, the investigators propose a Hybrid Type I, randomized, stepped-wedge trial at 6 VAMCs to increase the rate of timely, guideline-concordant diagnosis and treatment of OSA among Veterans with ischemic stroke/TIA and thereby reduce recurrent vascular events and hospital readmissions. The investigators will identify matched control sites for each ASAP implementation site to examine temporal trends in outcomes among non-intervention sites. For example, the investigators will use administrative data to examine the use of polysomnography across stroke/TIA patients in the VA system and compare changes in matched controls versus the intervention sites on the diagnostic rate. The same adjustment approach will be used for ASAP intervention sites and for control sites. Effectively identifying and treating risk factors for ischemic stroke and transient ischemic attack (TIA) is important to patients, their family members, and healthcare systems. While obstructive sleep apnea (OSA) is a known risk factor for stroke and TIA that is present in more than 70% of stroke/TIA survivors, testing for OSA is infrequently performed for patients and within healthcare systems. The Addressing Sleep Apnea Post-Stroke/TIA (ASAP) study intends to improve rates of guideline-recommended OSA testing and treatment through local quality improvement initiatives (QI) conducted within and across 6 VA Medical Centers. ASAP will also determine the impact of these local QI initiatives on rates of OSA diagnosis, OSA treatment, treatment adherence, recurrent vascular events, and hospital readmissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3111dacbab5::7ce0b137e627cd033ffb0021e039e397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3111dacbab5::7ce0b137e627cd033ffb0021e039e397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Jorgenson, Karen; Hotaling, Scott; Tronstad, Lusha; Finn, Debra; Collins, Sarah;Data and code necessary to replicate the findings from the manuscript titled "Hydrology and trophic flexibility structure alpine stream food webs in the Teton Range, Wyoming, USA". Abstract: Understanding biotic interactions and how they vary across habitats is important for assessing the vulnerability of communities to climate change. Receding glaciers in high mountain areas can lead to the hydrologic homogenization of streams and reduce habitat heterogeneity, which are predicted to drive declines in regional diversity and imperil endemic species. However, little is known about food web structure in alpine stream habitats, particularly among streams fed by different hydrologic sources (e.g., glaciers or snowfields). We used gut content and stable isotope analyses to characterize food web structure of alpine macroinvertebrate communities in streams fed by glaciers, subterranean ice, and seasonal snowpack in the Teton Range, Wyoming, USA. Specifically, we sought to: (1) assess community resource use among streams fed by different hydrologic sources; (2) explore how variability in resource use relates to feeding strategies; and (3) identify which environmental variables influenced resource use within communities. Average taxa diet differed among all hydrologic sources, and food webs in subterranean ice-fed streams were largely supported by the gold alga Hydrurus. This finding bolsters a hypothesis that streams fed by subterranean ice may provide key habitat for cold-water species under climate change by maintaining a longer growing season for this high-quality food resource. While a range of environmental variables associated with hydrologic source (e.g., stream temperature) were related to diet composition, hydrologic source categories explained the most variation in diet composition models. Less variable diets within versus among streams suggests high trophic flexibility, which was further supported by high levels of omnivory. This inherent trophic flexibility may bolster alpine stream communities against future changes in resource availability as the mountain cryosphere fades. Ultimately, our results expand understanding of the habitat requirements for imperiled alpine taxa while empowering predictions of their vulnerability under climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13826656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13826656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu