- home
- Search
- Energy Research
- National Science Foundation
- DE
- EU
- Energy Research
- National Science Foundation
- DE
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Funded by:NSF | Powering the Kentucky Bio...NSF| Powering the Kentucky Bioeconomy for a Sustainable FutureAuthors:Jarrod D. Milshtein;
Jarrod D. Milshtein
Jarrod D. Milshtein in OpenAIREAman Preet Kaur;
Matthew D. Casselman; Jeffrey A. Kowalski; +8 AuthorsAman Preet Kaur
Aman Preet Kaur in OpenAIREJarrod D. Milshtein;
Jarrod D. Milshtein
Jarrod D. Milshtein in OpenAIREAman Preet Kaur;
Matthew D. Casselman; Jeffrey A. Kowalski;Aman Preet Kaur
Aman Preet Kaur in OpenAIRESubrahmanyam Modekrutti;
Peter L. Zhang;Subrahmanyam Modekrutti
Subrahmanyam Modekrutti in OpenAIREN. Harsha Attanayake;
N. Harsha Attanayake
N. Harsha Attanayake in OpenAIRECorrine F. Elliott;
Sean R. Parkin; Chad Risko;Corrine F. Elliott
Corrine F. Elliott in OpenAIREFikile R. Brushett;
Susan A. Odom;Fikile R. Brushett
Fikile R. Brushett in OpenAIREdoi: 10.1039/c6ee02027e
Symmetric flow cell cycling of a soluble phenothiazine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee02027e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee02027e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors:Birger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur; +16 AuthorsTorsten Sachs
Torsten Sachs in OpenAIREBirger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur;Torsten Sachs
Torsten Sachs in OpenAIRETorben R. Christensen;
Torben R. Christensen;Torben R. Christensen
Torben R. Christensen in OpenAIREWalter C. Oechel;
Walter C. Oechel
Walter C. Oechel in OpenAIRELars Kutzbach;
Adrian V. Rocha;Lars Kutzbach
Lars Kutzbach in OpenAIREWerner Eugster;
Magnus Lund;Werner Eugster
Werner Eugster in OpenAIREM. K. van der Molen;
Mika Aurela;M. K. van der Molen
M. K. van der Molen in OpenAIREThomas Friborg;
Thomas Friborg
Thomas Friborg in OpenAIREFrans-Jan W. Parmentier;
Frans-Jan W. Parmentier;Frans-Jan W. Parmentier
Frans-Jan W. Parmentier in OpenAIREElyn Humphreys;
Elyn Humphreys
Elyn Humphreys in OpenAIREDaniel P. Rasse;
Daniel P. Rasse
Daniel P. Rasse in OpenAIREMikkel P. Tamstorf;
Mikkel P. Tamstorf
Mikkel P. Tamstorf in OpenAIREHerbert N. Mbufong;
Herbert N. Mbufong
Herbert N. Mbufong in OpenAIREAbstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:IEEE Funded by:NSF | CAREER: Enabling grid-awa..., EC | TRUST-MLNSF| CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems ,EC| TRUST-MLarXiv: 2204.05554
For fast timescales or long prediction horizons, the AC optimal power flow (OPF) problem becomes a computational challenge for large-scale, realistic AC networks. To overcome this challenge, this paper presents a novel network reduction methodology that leverages an efficient mixed-integer linear programming (MILP) formulation of a Kron-based reduction that is optimal in the sense that it balances the degree of the reduction with resulting modeling errors in the reduced network. The method takes as inputs the full AC network and a pre-computed library of AC load flow data and uses the graph Laplacian to constraint nodal reductions to only be feasible for neighbors of non-reduced nodes. This results in a highly effective MILP formulation which is embedded within an iterative scheme to successively improve the Kron-based network reduction until convergence. The resulting optimal network reduction is, thus, grounded in the physics of the full network. The accuracy of the network reduction methodology is then explored for a 100+ node medium-voltage radial distribution feeder example across a wide range of operating conditions. It is finally shown that a network reduction of 25-85% can be achieved within seconds and with worst-case voltage magnitude deviation errors within any super node cluster of less than 0.01pu. These results illustrate that the proposed optimization-based approach to Kron reduction of networks is viable for larger networks and suitable for use within various power system applications.
arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/cdc510...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cdc51059.2022.9992730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/cdc510...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cdc51059.2022.9992730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceAuthors: Orrin Myers; Georges Kunstler;Jalene M. LaMontagne;
Jalene M. LaMontagne
Jalene M. LaMontagne in OpenAIREJames A. Lutz;
+60 AuthorsJames A. Lutz
James A. Lutz in OpenAIREOrrin Myers; Georges Kunstler;Jalene M. LaMontagne;
Jalene M. LaMontagne
Jalene M. LaMontagne in OpenAIREJames A. Lutz;
James A. Lutz
James A. Lutz in OpenAIREIstem Fer;
Jordan Luongo;Istem Fer
Istem Fer in OpenAIRERenata Poulton-Kamakura;
Renata Poulton-Kamakura
Renata Poulton-Kamakura in OpenAIREJanneke HilleRisLambers;
Yassine Messaoud; Sam Pearse;Janneke HilleRisLambers
Janneke HilleRisLambers in OpenAIREGregory S. Gilbert;
Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger;Gregory S. Gilbert
Gregory S. Gilbert in OpenAIREShubhi Sharma;
Robert R. Parmenter; Amanda M. Schwantes;Shubhi Sharma
Shubhi Sharma in OpenAIREScott M. Pearson;
Thomas G. Whitham;Scott M. Pearson
Scott M. Pearson in OpenAIREThomas T. Veblen;
Thomas T. Veblen
Thomas T. Veblen in OpenAIREChristopher L. Kilner;
Christopher L. Kilner
Christopher L. Kilner in OpenAIRESamantha Sutton;
Chase L. Nuñez;Samantha Sutton
Samantha Sutton in OpenAIREEmily V. Moran;
Emily V. Moran
Emily V. Moran in OpenAIRENathan L. Stephenson;
Nathan L. Stephenson
Nathan L. Stephenson in OpenAIREAdrian J. Das;
Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin;Adrian J. Das
Adrian J. Das in OpenAIREJames S. Clark;
James S. Clark;James S. Clark
James S. Clark in OpenAIREWalter D. Koenig;
Robert A. Andrus; Amy V. Whipple;Walter D. Koenig
Walter D. Koenig in OpenAIREJill F. Johnstone;
Eliot J. B. McIntire;Jill F. Johnstone
Jill F. Johnstone in OpenAIREKyle C. Rodman;
Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias;Kyle C. Rodman
Kyle C. Rodman in OpenAIREQinfeng Guo;
Qinfeng Guo
Qinfeng Guo in OpenAIREChristopher M. Moore;
Christopher M. Moore
Christopher M. Moore in OpenAIREMichael Dietze;
Mélaine Aubry-Kientz; Dale G. Brockway;Michael Dietze
Michael Dietze in OpenAIREMichał Bogdziewicz;
Michał Bogdziewicz
Michał Bogdziewicz in OpenAIREKai Zhu;
Kai Zhu
Kai Zhu in OpenAIREYves Bergeron;
Robert Daley;Yves Bergeron
Yves Bergeron in OpenAIREMargaret Swift;
Kristin Legg;Margaret Swift
Margaret Swift in OpenAIREpmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:MDPI AG Funded by:NSF | SBIR Phase II: A Closed ...NSF| SBIR Phase II: A Closed Loop Process for the recycle of End-of-Life Li-ion BatteriesAuthors:Omar Velázquez-Martínez;
Johanna Valio; Annukka Santasalo-Aarnio;Omar Velázquez-Martínez
Omar Velázquez-Martínez in OpenAIREMarkus Reuter;
+1 AuthorsMarkus Reuter
Markus Reuter in OpenAIREOmar Velázquez-Martínez;
Johanna Valio; Annukka Santasalo-Aarnio;Omar Velázquez-Martínez
Omar Velázquez-Martínez in OpenAIREMarkus Reuter;
Markus Reuter
Markus Reuter in OpenAIRERodrigo Serna-Guerrero;
Rodrigo Serna-Guerrero
Rodrigo Serna-Guerrero in OpenAIRELithium-ion batteries (LIBs) are currently one of the most important electrochemical energy storage devices, powering electronic mobile devices and electric vehicles alike. However, there is a remarkable difference between their rate of production and rate of recycling. At the end of their lifecycle, only a limited number of LIBs undergo any recycling treatment, with the majority go to landfills or being hoarded in households. Further losses of LIB components occur because the the state-of-the-art LIB recycling processes are limited to components with high economic value, e.g., Co, Cu, Fe, and Al. With the increasing popularity of concepts such as “circular economy” (CE), new LIB recycling systems have been proposed that target a wider spectrum of compounds, thus reducing the environmental impact associated with LIB production. This review work presents a discussion of the current practices and some of the most promising emerging technologies for recycling LIBs. While other authoritative reviews have focused on the description of recycling processes, the aim of the present was is to offer an analysis of recycling technologies from a CE perspective. Consequently, the discussion is based on the ability of each technology to recover every component in LIBs. The gathered data depicted a direct relationship between process complexity and the variety and usability of the recovered fractions. Indeed, only processes employing a combination of mechanical processing, and hydro- and pyrometallurgical steps seemed able to obtain materials suitable for LIB (re)manufacture. On the other hand, processes relying on pyrometallurgical steps are robust, but only capable of recovering metallic components.
Batteries arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 366 citations 366 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Batteries arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Spain, FrancePublisher:Elsevier BV Funded by:NSF | International Research Fe...NSF| International Research Fellowship Program: Solar Energy ScienceMarron, Df; Canovas, E.; Levy, My;Marti, A.;
Marti, A.
Marti, A. in OpenAIRELuque, A.;
Afshar, M.; Albert, J.;Luque, A.
Luque, A. in OpenAIRELehmann, S.;
Abou-Ras, D.; Sadewasser, S.;Lehmann, S.
Lehmann, S. in OpenAIREBarreau, Nicolas;
Barreau, Nicolas
Barreau, Nicolas in OpenAIRENanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg=1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: S...NSF| Collaborative Research: Sparse Optimization in Large Scale Data Processing: A Multiscale Proximity ApproachAuthors: Diefenthaler, Markus; Farhat, Abdullah; Verbytskyi, Andrii; Xu, Yuesheng;AbstractWe study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables $$Q^2$$ Q 2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection of a training set, the neural networks sufficiently surpass all classical reconstruction methods on most of the kinematic range considered. Rapid access to large samples of simulated data and the ability of neural networks to effectively extract information from large data sets, both suggest that deep learning techniques to reconstruct DIS kinematics can serve as a rigorous method to combine and outperform the classical reconstruction methods.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-022-10964-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-022-10964-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataAuthors:Jucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
+115 AuthorsCoomes, David
Coomes, David in OpenAIREJucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
Caspersen, John;Coomes, David
Coomes, David in OpenAIREAli, Arshad;
Panzou, Grace Jopaul Loubota; Feldpausch, Ted R;Ali, Arshad
Ali, Arshad in OpenAIREFalster, Daniel;
Usoltsev, Vladimir A; Adu-Bredu, Stephen;Falster, Daniel
Falster, Daniel in OpenAIREAlves, Luciana F;
Aminpour, Mohammad;Alves, Luciana F
Alves, Luciana F in OpenAIREAngoboy, Ilondea B;
Angoboy, Ilondea B
Angoboy, Ilondea B in OpenAIREAnten, Niels PR;
Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan;Anten, Niels PR
Anten, Niels PR in OpenAIREBalvanera, Patricia;
Banin, Lindsay;Balvanera, Patricia
Balvanera, Patricia in OpenAIREBarbier, Nicolas;
Barbier, Nicolas
Barbier, Nicolas in OpenAIREBattles, John J;
Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev;Battles, John J
Battles, John J in OpenAIREDai, Jingyu;
Dalponte, Michele;Dai, Jingyu
Dai, Jingyu in OpenAIREDimobe, Kangbéni;
Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A;Dimobe, Kangbéni
Dimobe, Kangbéni in OpenAIREEnríquez, Moisés;
Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric;Enríquez, Moisés
Enríquez, Moisés in OpenAIREForrester, David I;
Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat;Forrester, David I
Forrester, David I in OpenAIREHutley, Lindsay B;
Hutley, Lindsay B
Hutley, Lindsay B in OpenAIREIchie, Tomoaki;
Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan;Ichie, Tomoaki
Ichie, Tomoaki in OpenAIRELarsary, Maryam Kazempour;
Larsary, Maryam Kazempour
Larsary, Maryam Kazempour in OpenAIREKenzo, Tanaka;
Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem;Kenzo, Tanaka
Kenzo, Tanaka in OpenAIREKvasnica, Jakub;
Kvasnica, Jakub
Kvasnica, Jakub in OpenAIRELin, Siliang;
Lin, Siliang
Lin, Siliang in OpenAIRELines, Emily;
Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L;Lines, Emily
Lines, Emily in OpenAIREMattsson, Eskil;
Mattsson, Eskil
Mattsson, Eskil in OpenAIREMatula, Radim;
Matula, Radim
Matula, Radim in OpenAIREMeave, Jorge A;
Meave, Jorge A
Meave, Jorge A in OpenAIREMensah, Sylvanus;
Mi, Xiangcheng; Momo, Stéphane;Mensah, Sylvanus
Mensah, Sylvanus in OpenAIREMoncrieff, Glenn R;
Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C;Moncrieff, Glenn R
Moncrieff, Glenn R in OpenAIRERyan, Casey;
Sanaei, Anvar; Sanger, Jennifer;Ryan, Casey
Ryan, Casey in OpenAIRESchlund, Michael;
Schlund, Michael
Schlund, Michael in OpenAIRESellan, Giacomo;
Sellan, Giacomo
Sellan, Giacomo in OpenAIREShenkin, Alexander;
Sonké, Bonaventure; Sterck, Frank J;Shenkin, Alexander
Shenkin, Alexander in OpenAIRESvátek, Martin;
Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C;Svátek, Martin
Svátek, Martin in OpenAIREVovides, Alejandra G;
Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan;Vovides, Alejandra G
Vovides, Alejandra G in OpenAIREYamada, Toshihiro;
Zavala, Miguel A;Yamada, Toshihiro
Yamada, Toshihiro in OpenAIREpmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Funded by:EC | SynBioTEC, NSF | CAREER: Supramolecular en...EC| SynBioTEC ,NSF| CAREER: Supramolecular engineering of hydrogel forming triblock copolymersTrevor G. Johnston; Petri-Jaan Lahtvee; Petri-Jaan Lahtvee; Zoel Parent; Tarmo Tamm;Rahul Kumar;
Rahul Kumar; Hans Priks; Tobias Butelmann; Tobias Butelmann;Rahul Kumar
Rahul Kumar in OpenAIREAlshakim Nelson;
Alshakim Nelson
Alshakim Nelson in OpenAIREpmid: 35006951
The three-dimensional (3D) printing of cell-containing polymeric hydrogels creates living materials (LMs), offering a platform for developing innovative technologies in areas like biosensors and biomanufacturing. The polymer material properties of cross-linkable F127-bis-urethane methacrylate (F127-BUM) allow reproducible 3D printing and stability in physiological conditions, making it suitable for fabricating LMs. Though F127-BUM-based LMs permit diffusion of solute molecules like glucose and ethanol, it remains unknown whether these are permissible for oxygen, essential for respiration. To determine oxygen permissibility, we quantified dissolved oxygen consumption by the budding yeast-laden F127-BUM-based LMs. Moreover, we obtained data on cell-retaining LMs, which allowed a direct comparison between LMs and suspension cultures. We further developed a highly reliable method to isolate cells from LMs for flow cytometry analysis, cell viability evaluation, and the purification of macromolecules. We found oxygen consumption heavily impaired inside LMs, indicating that yeast metabolism relies primarily on fermentation instead of respiration. Applying this finding to brewing, we observed a higher (3.7%) ethanol production using LMs than the traditional brewing process, indicating improved fermentation. Our study concludes that the present F127-BUM-based LMs are useful for microaerobic processes but developing aerobic bioprocesses will require further research.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Bio MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsabm.1c00754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Bio MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsabm.1c00754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SwitzerlandPublisher:Elsevier BV Funded by:NSF | Compressive Sampling for ..., EC | DyVirtNSF| Compressive Sampling for Uncertainty Modeling and Quantification of Dynamical Systems Subject to Highly Limited/Incomplete Data ,EC| DyVirtAuthors: Ioannis A. Kougioumtzoglou;George D. Pasparakis;
George D. Pasparakis
George D. Pasparakis in OpenAIREMichael Beer;
Michael Beer; +2 AuthorsMichael Beer
Michael Beer in OpenAIREIoannis A. Kougioumtzoglou;George D. Pasparakis;
George D. Pasparakis
George D. Pasparakis in OpenAIREMichael Beer;
Michael Beer; Michael Beer;Michael Beer
Michael Beer in OpenAIREKetson R. M. dos Santos;
Ketson R. M. dos Santos
Ketson R. M. dos Santos in OpenAIREAbstract A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l 1 -norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 45 Powered bymore_vert CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu