- home
- Search
- Energy Research
- Restricted
- other engineering and technologies
- DE
- EU
- EG
- Energy Research
- Restricted
- other engineering and technologies
- DE
- EU
- EG
description Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSAuthors: Oró Prim, Eduard; Miró, Laia; Farid, Mohammed M.; Cabeza, Luisa F.;Abstract Food transport and storage at low temperatures is a matter worldwide due to changes of the dietary habits and the increasing of the population. The issue of improving food storage applies at different applications such as commercial freezers or refrigerated trucks. The aim of this work is to improve the thermal performance of commercial freezers using phase change materials (PCMs) under door openings and electrical power failure. A commercial PCM was selected (Climsel-18) with a melting temperature of −18 °C, which is contained in 10 mm thick stainless steel panels placed at different locations in the freezer. During 3 h of electrical power failure, the use of PCM maintained the freezer temperature 4–6 °C lower and that of the frozen products remains at acceptable levels for much longer time. With frequent door openings the benefit of the PCM is evident when the temperature of the cabinet is near the melting temperature of the PCM.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2012.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2012.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Funded by:EC | MULTIFLOWEC| MULTIFLOWAuthors: A. Lozano-Duran; J. Jimenez;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erc_________::ea0b21cefa44976e4559796125a4437a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erc_________::ea0b21cefa44976e4559796125a4437a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV S. Heuer; Luciano Cortese; Viktor Scherer; Osvalda Senneca; Francesca Cerciello; Martin Schiemann;A laminar drop tube reactor (DTR) was used to perform fast pyrolysis of walnut shells, a ligno-cellulosic biomass sample, in nitrogen and carbon dioxide atmospheres. The DTR reached the temperature of 1300 degrees C and the heating rate of 10(4)-10(5) degrees C/s. Char samples collected at different residence times along the reactor were characterized by ultimate and proximate analysis and by SEM. Char combustion reactivity was then measured by non-isothermal thermogravimetric analysis (TGA) in air. The analyses show that at residence times of 66 ms pyrolysis in N-2 is not complete, whereas it is complete in CO2. For residence times of 115 ms the differences between samples produced in N-2 and CO2 atmospheres level off.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.04.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.04.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionClaudio Finotti; Elena Gaio; Ivone Benfatto; Inho Song; Jun Tao;The ITER large power supplies of the superconducting magnets and heating and current drive systems, fed by the Pulsed Power Electrical Network, can absorb from the grid active and reactive power up to 500 MW and 950 Mvar respectively. In this paper, a new analytical approach based on the state space formulation is proposed to investigate the dynamic stability of such complex system, including the main power components and their control, with the aim of identifying possible instability phenomena due to interactions among the ac/dc converters, reactive power compensation systems and related controllers. This model describes the dynamics of the main components of the ITER pulsed power supply systems and it is based on small signal approach to tackle the non linearity of the ac/dc conversion and reactive power compensation systems; the discrete phenomena have been approximated by continuous transfer functions, so the linear control theory can be applied for the stability analysis, making this method very effective and fast. Moreover a modular approach is adopted; thus this analytical model can be also easily adapted to other similar electrical power systems.
CNR ExploRA arrow_drop_down Fusion Engineering and DesignArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2018.12.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Fusion Engineering and DesignArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2018.12.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:Elsevier BV Pedro F. Pereira; Nuno M. M. Ramos; Ana Rocha; Ricardo M.S.F. Almeida; Ricardo M.S.F. Almeida; Eva Barreira; Débora Pinto; João Poças Martins; M. Lurdes Simões;ABSTRACT Improving the comfort of public transport buildings is a mean to arouse the public interest in its use. The available studies concerning transport stations with semi-outdoor configurations barely emphasize local thermal discomfort. Generally, these studies produce a somewhat superficial approach to the subject, relying on the direct application of the standards (ISO 7730 and ASHRAE 55). Since the characteristics of most transport stations differ from the scope of the standards, the direct application of these standards does not represent the real thermal discomfort due to draught sensed by the users. The aim of this study is to propose a new approach able to predict the percentage of dissatisfied people due to draught in semi-outdoor spaces. An experimental campaign was conducted in a transport station with a semi-outdoor configuration, where 575 passengers were surveyed about the sensation of air movement, while air temperature and air velocity were measured. Through the collected data, it was possible to propose an alternative draught model (aDR) to assess the local thermal discomfort due to draught in semi-outdoor spaces.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maximilian Hauck; Stephan Herrmann; Hartmut Spliethoff;A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to wateregas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.
MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 PortugalPublisher:Elsevier BV Funded by:FCT | PD/BD/52621/2014FCT| PD/BD/52621/2014Ribeirinha, P.; Alves, I.; Vidal-Vazquez, F.; Schuller, G.; Boaventura, M.; Mendes; A. ;A fuel cell is an exothermic device that wastes ca. 50% of the input chemical energy while methanol steam-reforming (MSR) reaction is endothermic. The integration of a low temperature methanol steam-reforming cell (MSR-C) with a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) in a combined stack arrangement allows the thermal integration of both reactors. A novel bipolar plate of poly(p-phenylene sulfide) (PPS) featuring the fuel cell flow field in one side and the reformer flow field in the other was designed, built and assessed. For the first time are reported high current densities (>0.5 A cm-2) with the integrated system running at 453 K. The system was also ran for more than 100 h at 453 K, at 0.3 A cm-2, with a methanol conversion of>90%. It was observed some degradation of the membrane electrode assembly (MEA) due to the continuous presence of methanol in the reformate stream. Electrochemical impedance spectroscopy (EIS) analyses revealed an overall increase of the resistances. The self-thermal sustainability of the combined device was only reached for >0.75 A cm-2 due to the poor thermal insulation of the combined reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.11.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.11.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSAuthors: Gabriel Zsembinszki; Luisa F. Cabeza; Mohammed Farid;Abstract Open-air swimming pools in Mediterranean climate regions are heated by direct solar radiation with no auxiliary heating systems. In order to extend the swimming season or improve comfort conditions, solar collectors or pool coverings may be used. In this paper, another approach was followed through the use of phase change materials (PCM). Two methods of introducing the PCM were considered: (1) encapsulated in the sidewalls and bottom of the pool, and (2) use the PCM in an external heat exchanger. Heat is stored when water temperature is sufficiently high, while it is released when water temperature drops below comfort levels. A numerical model was built and validated for predicting the evolution of the water temperature, by taking into account meteorological data at three different locations in north-east of Spain. The simulations showed that using phase change materials provided some improvement of water conditions, especially when used in an external heat exchanger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 Croatia, Denmark, CroatiaPublisher:Elsevier BV Markovska, Nataša; Klemeš, Jiri Jaromir; Duić, Neven; Guzović, Zvonimir; Mathiesen, Brian Vad; Lund, Henrik; Yan, Jinyue;The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate, discuss, share, and disseminate new ideas.At the 10th SDEWES Conference, about 500 participants from 64 countries delivered total 541 contributions - 5 invited lectures, 3 panels, 49 regular sessions, 17 special sessions and 5 poster sessions, aimed at deepening the knowledge body and scientific understanding, improvement of long-term scientific assessments, strengthening of scientific capacities around the world and at ensuring that the sciences are responsive to the emerging international, European, regional and national challenges.The dedicated Energy special issue includes 24 papers, which traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper is included, which analyses selected SDEWES contributions published in the special issues of leading scientific journals and highlights their provisions towards addressing the challenges of energy security in twenty first century.The Guest editors believe that the selected papers and the addressed issues will considerably extend the knowledge body published in Energy journal and will be of interest to its readers.The Guest editors would like to thank all the reviewers who have made most valuable and highly appreciated contributions by reviewing, commenting and advising the authors. Special thanks should go to the administrative staff of the Energy journal for their excellent support.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik;The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NOx emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN BW one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation.
Research at ASB arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSAuthors: Oró Prim, Eduard; Miró, Laia; Farid, Mohammed M.; Cabeza, Luisa F.;Abstract Food transport and storage at low temperatures is a matter worldwide due to changes of the dietary habits and the increasing of the population. The issue of improving food storage applies at different applications such as commercial freezers or refrigerated trucks. The aim of this work is to improve the thermal performance of commercial freezers using phase change materials (PCMs) under door openings and electrical power failure. A commercial PCM was selected (Climsel-18) with a melting temperature of −18 °C, which is contained in 10 mm thick stainless steel panels placed at different locations in the freezer. During 3 h of electrical power failure, the use of PCM maintained the freezer temperature 4–6 °C lower and that of the frozen products remains at acceptable levels for much longer time. With frequent door openings the benefit of the PCM is evident when the temperature of the cabinet is near the melting temperature of the PCM.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2012.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2012.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Funded by:EC | MULTIFLOWEC| MULTIFLOWAuthors: A. Lozano-Duran; J. Jimenez;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erc_________::ea0b21cefa44976e4559796125a4437a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erc_________::ea0b21cefa44976e4559796125a4437a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV S. Heuer; Luciano Cortese; Viktor Scherer; Osvalda Senneca; Francesca Cerciello; Martin Schiemann;A laminar drop tube reactor (DTR) was used to perform fast pyrolysis of walnut shells, a ligno-cellulosic biomass sample, in nitrogen and carbon dioxide atmospheres. The DTR reached the temperature of 1300 degrees C and the heating rate of 10(4)-10(5) degrees C/s. Char samples collected at different residence times along the reactor were characterized by ultimate and proximate analysis and by SEM. Char combustion reactivity was then measured by non-isothermal thermogravimetric analysis (TGA) in air. The analyses show that at residence times of 66 ms pyrolysis in N-2 is not complete, whereas it is complete in CO2. For residence times of 115 ms the differences between samples produced in N-2 and CO2 atmospheres level off.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.04.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.04.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionClaudio Finotti; Elena Gaio; Ivone Benfatto; Inho Song; Jun Tao;The ITER large power supplies of the superconducting magnets and heating and current drive systems, fed by the Pulsed Power Electrical Network, can absorb from the grid active and reactive power up to 500 MW and 950 Mvar respectively. In this paper, a new analytical approach based on the state space formulation is proposed to investigate the dynamic stability of such complex system, including the main power components and their control, with the aim of identifying possible instability phenomena due to interactions among the ac/dc converters, reactive power compensation systems and related controllers. This model describes the dynamics of the main components of the ITER pulsed power supply systems and it is based on small signal approach to tackle the non linearity of the ac/dc conversion and reactive power compensation systems; the discrete phenomena have been approximated by continuous transfer functions, so the linear control theory can be applied for the stability analysis, making this method very effective and fast. Moreover a modular approach is adopted; thus this analytical model can be also easily adapted to other similar electrical power systems.
CNR ExploRA arrow_drop_down Fusion Engineering and DesignArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2018.12.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Fusion Engineering and DesignArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2018.12.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:Elsevier BV Pedro F. Pereira; Nuno M. M. Ramos; Ana Rocha; Ricardo M.S.F. Almeida; Ricardo M.S.F. Almeida; Eva Barreira; Débora Pinto; João Poças Martins; M. Lurdes Simões;ABSTRACT Improving the comfort of public transport buildings is a mean to arouse the public interest in its use. The available studies concerning transport stations with semi-outdoor configurations barely emphasize local thermal discomfort. Generally, these studies produce a somewhat superficial approach to the subject, relying on the direct application of the standards (ISO 7730 and ASHRAE 55). Since the characteristics of most transport stations differ from the scope of the standards, the direct application of these standards does not represent the real thermal discomfort due to draught sensed by the users. The aim of this study is to propose a new approach able to predict the percentage of dissatisfied people due to draught in semi-outdoor spaces. An experimental campaign was conducted in a transport station with a semi-outdoor configuration, where 575 passengers were surveyed about the sensation of air movement, while air temperature and air velocity were measured. Through the collected data, it was possible to propose an alternative draught model (aDR) to assess the local thermal discomfort due to draught in semi-outdoor spaces.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maximilian Hauck; Stephan Herrmann; Hartmut Spliethoff;A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to wateregas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.
MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 PortugalPublisher:Elsevier BV Funded by:FCT | PD/BD/52621/2014FCT| PD/BD/52621/2014Ribeirinha, P.; Alves, I.; Vidal-Vazquez, F.; Schuller, G.; Boaventura, M.; Mendes; A. ;A fuel cell is an exothermic device that wastes ca. 50% of the input chemical energy while methanol steam-reforming (MSR) reaction is endothermic. The integration of a low temperature methanol steam-reforming cell (MSR-C) with a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) in a combined stack arrangement allows the thermal integration of both reactors. A novel bipolar plate of poly(p-phenylene sulfide) (PPS) featuring the fuel cell flow field in one side and the reformer flow field in the other was designed, built and assessed. For the first time are reported high current densities (>0.5 A cm-2) with the integrated system running at 453 K. The system was also ran for more than 100 h at 453 K, at 0.3 A cm-2, with a methanol conversion of>90%. It was observed some degradation of the membrane electrode assembly (MEA) due to the continuous presence of methanol in the reformate stream. Electrochemical impedance spectroscopy (EIS) analyses revealed an overall increase of the resistances. The self-thermal sustainability of the combined device was only reached for >0.75 A cm-2 due to the poor thermal insulation of the combined reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.11.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.11.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSAuthors: Gabriel Zsembinszki; Luisa F. Cabeza; Mohammed Farid;Abstract Open-air swimming pools in Mediterranean climate regions are heated by direct solar radiation with no auxiliary heating systems. In order to extend the swimming season or improve comfort conditions, solar collectors or pool coverings may be used. In this paper, another approach was followed through the use of phase change materials (PCM). Two methods of introducing the PCM were considered: (1) encapsulated in the sidewalls and bottom of the pool, and (2) use the PCM in an external heat exchanger. Heat is stored when water temperature is sufficiently high, while it is released when water temperature drops below comfort levels. A numerical model was built and validated for predicting the evolution of the water temperature, by taking into account meteorological data at three different locations in north-east of Spain. The simulations showed that using phase change materials provided some improvement of water conditions, especially when used in an external heat exchanger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 Croatia, Denmark, CroatiaPublisher:Elsevier BV Markovska, Nataša; Klemeš, Jiri Jaromir; Duić, Neven; Guzović, Zvonimir; Mathiesen, Brian Vad; Lund, Henrik; Yan, Jinyue;The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate, discuss, share, and disseminate new ideas.At the 10th SDEWES Conference, about 500 participants from 64 countries delivered total 541 contributions - 5 invited lectures, 3 panels, 49 regular sessions, 17 special sessions and 5 poster sessions, aimed at deepening the knowledge body and scientific understanding, improvement of long-term scientific assessments, strengthening of scientific capacities around the world and at ensuring that the sciences are responsive to the emerging international, European, regional and national challenges.The dedicated Energy special issue includes 24 papers, which traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper is included, which analyses selected SDEWES contributions published in the special issues of leading scientific journals and highlights their provisions towards addressing the challenges of energy security in twenty first century.The Guest editors believe that the selected papers and the addressed issues will considerably extend the knowledge body published in Energy journal and will be of interest to its readers.The Guest editors would like to thank all the reviewers who have made most valuable and highly appreciated contributions by reviewing, commenting and advising the authors. Special thanks should go to the administrative staff of the Energy journal for their excellent support.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik;The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NOx emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN BW one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation.
Research at ASB arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu