- home
- Search
- Energy Research
- ES
- EU
- English
- University of Cambridge
- Energy Research
- ES
- EU
- English
- University of Cambridge
description Publicationkeyboard_double_arrow_right Other literature type , Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:OpenAlex Funded by:EC | HYPERION, UKRI | Equipment Account: Integr..., UKRI | Centre for Advanced Mater... +3 projectsEC| HYPERION ,UKRI| Equipment Account: Integrated Thin Film Deposition and Analysis System ,UKRI| Centre for Advanced Materials for Integrated Energy Systems (CAM-IES) ,UKRI| Nanocomposite Oxide Thin Films For Novel Ionotronic Magnetoelectrics ,UKRI| Affordable Perovskite Solar Irrigation Systems for Small-holder Farmers in Ethiopia (APSISSFE) ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Satyaprasad P. Senanayak; Krishanu Dey; Ravichandran Shivanna; Weiwei Li; Dibyajyoti Ghosh; Bart Roose; Youcheng Zhang; Zahra Andaji‐Garmaroudi; Nikhil Tiwale; Judith Driscoll; Richard H. Friend; Samuel D. Stranks; Henning Sirringhaus;arXiv: 2202.02553
L'étude du comportement inhérent au transport de charge induit par le champ des pérovskites d'halogénure de plomb 3D est restée en grande partie une tâche difficile, principalement en raison des effets indésirables de la migration ionique près de la température ambiante. En outre, la présence de méthylammonium dans de nombreuses compositions de pérovskite 3D hautement performantes introduit des instabilités supplémentaires, qui limitent le fonctionnement fiable des dispositifs optoélectroniques à température ambiante. Ici, nous abordons ces deux défis et démontrons que les transistors à effet de champ (FET) à base de compositions de pérovskite sans méthylammonium et à métaux mélangés (Pb/Sn), qui sont largement étudiés pour les applications de cellules solaires et de diodes électroluminescentes, ne souffrent pas d'effets de migration ionique comme leurs homologues Pb purs et présentent de manière fiable un transport de type p sans hystérésis avec une mobilité élevée atteignant 5,4 $cm^2/Vs$ , un rapport ON/OFF approchant 10 $ ^6 $ et une conductance de canal normalisée de 3 S/m. La migration ionique réduite se manifeste également par une dépendance à la température activée de la mobilité à effet de champ avec une faible énergie d'activation, ce qui reflète une densité significative de défauts électroniques peu profonds. Nous visualisons la migration ionique dans le plan supprimée dans les pérovskites contenant du Sn par rapport à leurs homologues de Pb pur en utilisant la microscopie à photoluminescence sous polarisation et démontrons des stabilités opérationnelles prometteuses du dispositif de tension et de contrainte de courant. Notre travail établit les FET comme une excellente plate-forme pour fournir des informations fondamentales sur le dopage, les défauts et la physique du transport de charge des semi-conducteurs à pérovskite halogénure de métal mélangé afin de faire progresser leurs applications dans les dispositifs optoélectroniques. La investigación del comportamiento inherente de transporte de carga impulsado por el campo de las perovskitas de haluro de plomo 3D ha seguido siendo en gran medida una tarea difícil, debido principalmente a los efectos indeseables de la migración iónica cerca de la temperatura ambiente. Además, la presencia de metilamonio en muchas composiciones de perovskita 3D de alto rendimiento introduce inestabilidades adicionales, que limitan el funcionamiento confiable del dispositivo optoelectrónico a temperatura ambiente. Aquí, abordamos ambos desafíos y demostramos que los transistores de efecto de campo (FET) basados en composiciones de perovskita de metal mixto (Pb/Sn) sin metilamonio, que se estudian ampliamente para aplicaciones de células solares y diodos emisores de luz, no sufren efectos de migración de iones como sus contrapartes de Pb puro y exhiben de manera confiable transporte de tipo p libre de histéresis con una alta movilidad que alcanza los 5.4 $cm^2/Vs$, una relación de encendido/APAGADO cercana a $ 10^6 $ y una conductancia de canal normalizada de 3 S/m. La migración iónica reducida también se manifiesta en una dependencia de la temperatura activada de la movilidad del efecto de campo con baja energía de activación, lo que refleja una densidad significativa de defectos electrónicos poco profundos. Visualizamos la migración iónica suprimida en el plano en perovskitas que contienen Sn en comparación con sus contrapartes de Pb puro utilizando microscopía de fotoluminiscencia bajo polarización y demostramos estabilidades operativas prometedoras del dispositivo de tensión y corriente. Nuestro trabajo establece los FET como una excelente plataforma para proporcionar información fundamental sobre el dopaje, los defectos y la física del transporte de carga de los semiconductores de perovskita de haluro de metal mixto para avanzar en sus aplicaciones en dispositivos optoelectrónicos. Investigation of the inherent field-driven charge transport behaviour of 3D lead halide perovskites has largely remained a challenging task, owing primarily to undesirable ionic migration effects near room temperature. In addition, the presence of methylammonium in many high performing 3D perovskite compositions introduces additional instabilities, which limit reliable room temperature optoelectronic device operation. Here, we address both these challenges and demonstrate that field-effect transistors (FETs) based on methylammonium-free, mixed-metal (Pb/Sn) perovskite compositions, that are widely studied for solar cell and light-emitting diode applications, do not suffer from ion migration effects as their pure Pb counterparts and reliably exhibit hysteresis free p-type transport with high mobility reaching 5.4 $cm^2/Vs$, ON/OFF ratio approaching $10^6$, and normalized channel conductance of 3 S/m. The reduced ion migration is also manifested in an activated temperature dependence of the field-effect mobility with low activation energy, which reflects a significant density of shallow electronic defects. We visualize the suppressed in-plane ionic migration in Sn-containing perovskites compared to their pure-Pb counterparts using photoluminescence microscopy under bias and demonstrate promising voltage and current-stress device operational stabilities. Our work establishes FETs as an excellent platform for providing fundamental insights into the doping, defect and charge transport physics of mixed-metal halide perovskite semiconductors to advance their applications in optoelectronic devices. ظل التحقيق في سلوك نقل الشحنة المتأصل الذي يحركه المجال لبيروفسكايت الرصاص ثلاثي الأبعاد مهمة صعبة إلى حد كبير، ويرجع ذلك في المقام الأول إلى تأثيرات الهجرة الأيونية غير المرغوب فيها بالقرب من درجة حرارة الغرفة. بالإضافة إلى ذلك، فإن وجود الميثيل أمونيوم في العديد من تركيبات البيروفسكايت ثلاثية الأبعاد عالية الأداء يؤدي إلى عدم استقرار إضافي، مما يحد من تشغيل الجهاز الإلكتروني البصري الموثوق في درجة حرارة الغرفة. هنا، نتصدى لكل من هذه التحديات ونوضح أن الترانزستورات ذات التأثير الميداني (FETs) القائمة على تركيبات البيروفسكايت الخالية من الميثيل أمونيوم والمختلطة المعادن (Pb/SN)، والتي تتم دراستها على نطاق واسع للخلايا الشمسية وتطبيقات الصمام الثنائي الباعث للضوء، لا تعاني من تأثيرات هجرة الأيونات كنظيراتها النقية من Pb وتظهر بشكل موثوق نقل p - type الخالي من التباطؤ مع حركة عالية تصل إلى 5.4 $cm^2/Vs$، ونسبة ON/OFF تقترب من $ 10^6 $، وتوصيل القناة الطبيعي لـ 3 S/m. تتجلى هجرة الأيونات المنخفضة أيضًا في الاعتماد المنشط على درجة الحرارة لحركة التأثير الميداني مع طاقة تنشيط منخفضة، مما يعكس كثافة كبيرة من العيوب الإلكترونية الضحلة. نتصور الهجرة الأيونية المكبوتة داخل الطائرة في البيروفسكايت المحتوية على Sn مقارنة بنظيراتها النقية من Pb باستخدام المجهر الضوئي تحت التحيز ونوضح الثبات التشغيلي الواعد للجهد وجهاز الإجهاد الحالي. يؤسس عملنا FETs كمنصة ممتازة لتوفير رؤى أساسية في فيزياء نقل المنشطات والعيوب والشحن لأشباه موصلات هاليد البيروفسكايت المختلطة المعادن لتعزيز تطبيقاتها في الأجهزة الإلكترونية الضوئية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/ge222-vx120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/ge222-vx120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 2017 Italy, Italy, Germany, United Kingdom, United Kingdom, France, United Kingdom, Germany, United Kingdom, Italy, United KingdomPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAndrea Bocci; Adomas Jelinskas; Vasiliki A Mitsou; Ryunosuke Iguchi; Teresa Lenz; Srinivasan Rajagopalan; Axel König; Markus Nordberg; Jos Vermeulen; Antonio Policicchio; Louis Helary; Bartosz Sebastian Dziedzic; Johannes Erdmann; Caterina Doglioni; Fernando Barreiro; Stefan Schlenker; Kunihiro Nagano; Tulin Varol; Alexander Khodinov; Brian Alexander Long; Eckhard von Toerne; Edisher Tskhadadze; Scott Snyder; Geert-Jan Besjes; Dms Sultan; Richard Nickerson; Hector De la Torre; David Hohn; Liza Mijović; Sebastien Prince; Anjishnu Bandyopadhyay; Carlo Varni; Tony Doyle; Arthur James Horton; Maximiliano Sioli; Urmila Soldevila; Marcia Begalli; Bruce Barnett; Tomas Slavicek; Elizabeth Brost; Alexander Zaitsev; Matteo Franchini; Yohei Yamaguchi; S. R. Hou; Blake Burghgrave; Trygve Buanes; Alvaro Lopez Solis; Yuri Kulchitsky; Michael Begel; Dilia Maria Portillo Quintero; Marco Milesi; Simon Berlendis; Olivier Le Dortz; Yoshiji Yasu; Antonio Limosani; Kun Liu; Mario Lassnig; Emily Nurse; Alessandro Cerri; Kaushik De; Maximilian Hils; Bogdan Malaescu; Yosuke Takubo; M. Franklin; Jacob Searcy; Nicolas Viaux Maira; Michael Rijssenbeek; Tairan Xu; Christian Weiser; Claire Gwenlan; Steve McMahon; Matthew Berg Epland; Edward Moyse; Michael David Werner; Jie Yu; Jorge Lopez; David Lynn; Borut Paul Kerševan; Martin Spousta; Clara Troncon; Jing Wang; Giacinto Piacquadio; Karel Smolek; Fabio Cerutti; Dimitrios Iliadis; Xiandong Zhao; Peter van Gemmeren; Stamatios Gkaitatzis; Sergei Chekanov; Tsz Yu Ng; Yoav Afik; David Francis; Ralf Hertenberger; Michael Adersberger; Maia Mosidze; David Vazquez Furelos; Vincent Pascuzzi; Andreas Petridis; Timothy Barklow; Nurcan Ozturk; Debarati Roy; Simonetta Gentile; Shuwei Ye; Wenhao Xu; Laurent Vacavant; Sabrina Sacerdoti; Stewart Martin-Haugh; Peter Krieger; Cunfeng Feng; Hasko Stenzel; Rui Zhang; Hal Evans; Angela Maria Burger; Mykhailo Lisovyi; Robert Richter; Rajaa Cherkaoui El Moursli; Matteo Negrini; Pavol Strizenec; Asma Hadef; C. Haber; Sabrina Groh; Andrea Rodriguez Perez; William Joseph Johnson; Koji Terashi; Mirkoantonio Casolino; James Ferrando; Jennifer Kathryn Roloff; Emma Torró Pastor; Piotr Andrzej Janus; Attila Krasznahorkay; P. Sinervo; Gabriella Gaudio; Shunichi Akatsuka; R. D. Kass; Alexander Cheplakov; Ping-Kun Teng; Cyril Becot; Haonan Lu; Phillip Gutierrez; Andrea Ventura; Nikolai Fomin; Dominic Hirschbuehl; Yun-Ju Lu; Cristian Stanescu; Francisca Garay Walls; Kuan-yu Lin; Baojia Tong; Huan Ren; Tomas Davidek; Stefan Kluth; Mikhail Ivanovitch Gostkin; Kilian Rosbach; James Robinson; Werner Wiedenmann; Stephanie Majewski; Michael Düren; Noemi Calace; Aaron James Armbruster; Anatoly Kozhin; Petr Gallus; Huacheng Cai; Katsufumi Sato; Pawel Malecki; Andrea Sansoni; Chiao-ying Lin; Attilio Picazio; Monika Wielers; Sarah Williams; Regina Moles-Valls; Frank Winklmeier; Ljiljana Simic; Boris Lemmer; Stephen Lloyd; Jane Cummings; Eric Hayato Takasugi; Wendy Taylor; Antonio Onofre; Dmitriy Maximov; Felix Mueller; Katharina Schleicher; Elisabetta Vilucchi; Qun Ouyang; Deepak Kar; Nacim Haddad; German D Carrillo-Montoya; Sina Bahrasemani; Masahiro Kuze; Harinder Singh Bawa; Daniel Joseph Antrim; Carl Jeske; Rebecca Anne Linck; Paolo Francavilla; Ruchi Gupta; Kristof Schmieden; Federico Lasagni Manghi; Sergey Denisov; Alexander Kupco; Ian Connelly; Peter Watkins; Giuliano Gustavino;handle: 2434/587222 , 11571/1270926 , 2108/197596
A measurement of the production of three isolated photons in proton–proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{−1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system. Physics letters / B 781, 55 - 76 (2018). doi:10.1016/j.physletb.2018.03.057 Published by North-Holland Publ., Amsterdam
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 28 Mar 2022 United KingdomPublisher:National Academy of Sciences Funded by:EC | RESPONDER, UKRI | Subglacial Access and Fas...EC| RESPONDER ,UKRI| Subglacial Access and Fast Ice Research Experiment (SAFIRE): Resolving the Basal Control on Ice Flow and Calving in GreenlandYoung, Tun Jan; Christoffersen, Poul; Bougamont, Marion; Tulaczyk, Slawek; Mankoff, Kenneth; Nicholls, Keith; Stewart, Craig;doi: 10.17863/cam.82846
Subglacial hydrologic systems regulate ice sheet flow, causing acceleration or deceleration depending on hydraulic efficiency and the rate at which surface meltwater is delivered to the bed. Because these systems are rarely observed, ice sheet basal drainage represents a poorly integrated and uncertain component of models used to predict sea-level changes. Here, we report radar-derived basal melt rates and unexpectedly warm subglacial conditions beneath a large Greenlandic outlet glacier. The basal melt rates averaged 14 mm d−1 over 4 months, peaking at 57 mm d−1 when basal wa-ter temperature reached +0.88 C in a nearby borehole. We attribute both observations to the conversion of potential energy of surface water as heat in the basal drainage system, which peaked during a period of rainfall and intense surface melting. Our findings reveal limitations in the theory of channel formation and we show that viscous dissipation far surpasses other basal heat sources, even in a distributed, high-pressure system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.82846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 61 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.82846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetSognnaes, Ida; Gambhir, Ajay; Van de Ven, Dirk-Jan; Nikas, Alexandros; Anger-Kraavi, Annela; Bui, Ha; Campagnolo, Lorenza; Delpiazzo, Elisa; Doukas, Haris; Giarola, Sara; Grant, Neil; Hawkes, Adam; K��berle, Alexandre C.; Kolpakov, Andrey; Mittal, Shivika; Moreno, Jorge; Perdana, Sigit; Rogelj, Joeri; Vielle, Marc; Peters, Glen P.;This dataset contains the underlying data for the following publication: I. Sognnaes, A. Gambhir, D.-J. Van de Ven, A. Nikas, A. Anger-Kraavi, H. Bui, L. Campagnolo, E. Delpiazzo, H. Doukas, S. Giarola, N. Grant, A. Hawkes, A. Koberle, A. Kolpakov, S. Mittal, J. Moreno, S. Perdana, J. Rogelj, M. Vielle, & G.P. Peters. (2021). A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5528951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5528951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetGiarola, Sara; Mittal, Shivika; Vielle, Marc; Perdana, Sigit; Campagnolo, Lorenza; Delpiazzo, Elisa; Bui, Ha; Anger-Kraavi, Annela; Koplakov, Andrey; Sognnaes, Ida; Peters, Glen; Hawkes, Adam; K��berle, Alexandre; Grant, Neil; Gambhir, Ajay; Nikas, Alexandros; Doukas, Haris; Moreno, Jorge; van de Ven, Dirk-Jan;This dataset contains the underlying data for the following publication: Giarola, S., Mittal, S., Vielle, M., Perdana, S., Campagnolo, L., Delpiazzo, E., ... & van de Ven, D. J. (2021). Challenges in the harmonisation of global integrated assessment models: A comprehensive methodology to reduce model response heterogeneity. Science of the Total Environment, 783, 146861. https://doi.org/10.1016/j.scitotenv.2021.146861.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5659438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5659438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 16 Nov 2022 United KingdomPublisher:Nature Research Funded by:EC | SOLARX, UKRI | Harnessing vibration-indu..., UKRI | Long-Range Charge and Ene...EC| SOLARX ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Long-Range Charge and Energy Transfer at Heterojunctions for Photovoltaics Beyond the Shockley-Queisser LimitAuthors: Rao, Akshay; Ashoka, Arjun; Gauriot, Nicolas; Schnedermann, Christoph;We present quantitative ultrafast interferometric pump-probe microscopy capable of tracking of photoexcitations with sub 10 nm spatial precision in three dimensions with 15 fs temporal reso- lution, through retrieval of the full transient photoinduced complex refractive index. We use this methodology to study the spatiotemporal dynamics of the quantum coherent photophysical process of ultrafast singlet exciton fission. Measurements on microcrystalline pentacene films grown on glass (SiO2) and boron nitride (hBN) reveal a 25 nm, 70 fs expansion of the joint-density-of-states along the crystal a,c-axes accompanied by a 6 nm, 115 fs change in the exciton density along the crystal b-axis. We propose that photogenerated singlet excitons expand along the direction of max- imal orbital π-overlap in the crystal a,c-plane to form correlated triplet pairs, which subsequently electronically decouples into free triplets along the crystal b-axis due to molecular sliding motion of neighbouring pentacene molecules. Our methodology lays the foundation for the study of three dimensional transport on ultrafast timescales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 55visibility views 55 download downloads 108 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Lidong Mo; Constantin M. Zohner; Peter B. Reich; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Susanne S. Renner; Johan van den Hoogen; Arnan Araza; Martin Herold; Leila Mirzagholi; Haozhi Ma; Colin Averill; Oliver L. Phillips; Javier G. P. Gamarra; Iris Hordijk; Devin Routh; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Iêda Leão do Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard Corredor; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Héctor; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Nobuo Imai; Andrzej M. Jagodziński;Résumé Les forêts sont un puits de carbone terrestre important, mais les changements anthropiques dans l'utilisation des terres et le climat ont considérablement réduit l'échelle de ce système 1 . Les estimations de télédétection pour quantifier les pertes de carbone des forêts mondiales 2–5 sont caractérisées par une incertitude considérable et nous manquons d'une évaluation complète de source terrestre pour comparer ces estimations. Ici, nous combinons plusieurs approches provenant de sources terrestres 6 et satellitaires 2,7,8 pour évaluer l'échelle du potentiel mondial de carbone forestier en dehors des terres agricoles et urbaines. Malgré les variations régionales, les prévisions ont démontré une cohérence remarquable à l'échelle mondiale, avec seulement une différence de 12 % entre les estimations provenant de sources terrestres et celles provenant de satellites. À l'heure actuelle, le stockage mondial du carbone forestier est nettement inférieur au potentiel naturel, avec un déficit total de 226 Gt (gamme de modèles = 151–363 Gt) dans les zones à faible empreinte humaine. La majeure partie (61 %, 139 Gt C) de ce potentiel se trouve dans des zones forestières existantes, dans lesquelles la protection des écosystèmes peut permettre aux forêts de se rétablir jusqu'à maturité. Les 39 % restants (87 Gt C) du potentiel se trouvent dans des régions où les forêts ont été enlevées ou fragmentées. Bien que les forêts ne puissent pas remplacer les réductions d'émissions, nos résultats soutiennent l'idée 2,3,9 que la conservation, la restauration et la gestion durable de diverses forêts offrent des contributions précieuses à la réalisation des objectifs mondiaux en matière de climat et de biodiversité. Resumen Los bosques son un importante sumidero de carbono terrestre, pero los cambios antropogénicos en el uso de la tierra y el clima han reducido considerablemente la escala de este sistema 1 . Las estimaciones de teledetección para cuantificar las pérdidas de carbono de los bosques globales 2–5 se caracterizan por una incertidumbre considerable y carecemos de una evaluación exhaustiva de fuentes terrestres para comparar estas estimaciones. Aquí combinamos varios enfoques de fuentes terrestres 6 y derivados de satélites 2,7,8 para evaluar la escala del potencial global de carbono forestal fuera de las tierras agrícolas y urbanas. A pesar de la variación regional, las predicciones demostraron una consistencia notable a escala global, con solo una diferencia del 12% entre las estimaciones de fuentes terrestres y las derivadas de satélites. En la actualidad, el almacenamiento global de carbono forestal se encuentra marcadamente por debajo del potencial natural, con un déficit total de 226 Gt (rango del modelo = 151-363 Gt) en áreas con baja huella humana. La mayor parte (61%, 139 Gt C) de este potencial se encuentra en áreas con bosques existentes, en las que la protección de los ecosistemas puede permitir que los bosques se recuperen hasta la madurez. El 39% restante (87 Gt C) del potencial se encuentra en regiones en las que los bosques han sido eliminados o fragmentados. Aunque los bosques no pueden ser un sustituto de las reducciones de emisiones, nuestros resultados respaldan la idea 2,3,9 de que la conservación, restauración y gestión sostenible de bosques diversos ofrece contribuciones valiosas para cumplir con los objetivos mundiales de clima y biodiversidad. Abstract Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1 . Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets. تعد الغابات المجردة بالوعة كربون أرضية كبيرة، لكن التغيرات البشرية في استخدام الأراضي والمناخ قللت بشكل كبير من حجم هذا النظام 1 . تتميز تقديرات الاستشعار عن بعد لقياس خسائر الكربون من الغابات العالمية 2–5 بقدر كبير من عدم اليقين ونفتقر إلى تقييم شامل من مصادر أرضية لقياس هذه التقديرات. هنا نجمع بين العديد من الأساليب الأرضية 6 والنهج المستمدة من الأقمار الصناعية 2،7،8 لتقييم حجم إمكانات الكربون في الغابات العالمية خارج الأراضي الزراعية والحضرية. على الرغم من التباين الإقليمي، أظهرت التوقعات اتساقًا ملحوظًا على نطاق عالمي، مع اختلاف بنسبة 12 ٪ فقط بين التقديرات الأرضية والتقديرات المستمدة من الأقمار الصناعية. في الوقت الحاضر، يكون التخزين العالمي للكربون في الغابات تحت الإمكانات الطبيعية بشكل ملحوظ، مع عجز إجمالي قدره 226 جيجا طن (نطاق النموذج = 151–363 جيجا طن) في المناطق ذات البصمة البشرية المنخفضة. وتوجد معظم هذه الإمكانات (61 ٪، 139 جيجا طن) في المناطق التي توجد بها غابات، حيث يمكن لحماية النظام الإيكولوجي أن تسمح للغابات بالتعافي إلى مرحلة النضج. تكمن نسبة 39 ٪ المتبقية (87 جيجا طن) من الإمكانات في المناطق التي تمت فيها إزالة الغابات أو تجزئتها. على الرغم من أن الغابات لا يمكن أن تكون بديلاً عن خفض الانبعاثات، إلا أن نتائجنا تدعم الفكرة 2،3،9 القائلة بأن الحفاظ على الغابات المتنوعة واستعادتها وإدارتها المستدامة تقدم مساهمات قيمة لتحقيق أهداف المناخ العالمي والتنوع البيولوجي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint , Other literature type 2014 United Kingdom, Italy, Italy, United Kingdom, Germany, United KingdomPublisher:Springer Nature Funded by:GSRIGSRIAuthors: CERN, 1211, Geneva 23, Switzerland; Aad, G.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Abbott, B.(Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA); Abdallah, J.(Institute of Physics, Academia Sinica, Taipei, Taiwan); +196 AuthorsCERN, 1211, Geneva 23, Switzerland; Aad, G.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Abbott, B.(Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA); Abdallah, J.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Abdel Khalek, S.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Abdinov, O.(Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan); Aben, R.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Abi, B.(Department of Physics, Oklahoma State University, Stillwater, OK, USA); Abolins, M.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); AbouZeid, O. S.(Department of Physics, University of Toronto, Toronto, ON, Canada); Abramowicz, H.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Abreu, H.(Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel); Abreu, R.(CERN, Geneva, Switzerland); Abulaiti, Y.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Acharya, B. S.(INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ICTP, Trieste, Italy; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy); Adamczyk, L.(Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland); Adams, D. L.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Adelman, J.(Department of Physics, Yale University, New Haven, CT, USA); Adomeit, S.(Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany); Adye, T.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Agatonovic-Jovin, T.(Institute of Physics, University of Belgrade, Belgrade, Serbia; Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia); Aguilar-Saavedra, J. A.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Agustoni, M.(Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland); Ahlen, S. P.(Department of Physics, Boston University, Boston, MA, USA); Ahmadov, F.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Aielli, G.(INFN Sezione di Roma Tor Vergata, Rome, Italy; Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy); Akerstedt, H.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Åkesson, T. P. A.(Fysiska institutionen, Lunds universitet, Lund, Sweden); Akimoto, G.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Akimov, A. V.(P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia); Alberghi, G. L.(INFN Sezione di Bologna, Bologna, Italy; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy); Albert, J.(Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada); Albrand, S.(Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France); Alconada Verzini, M. J.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Aleksa, M.(CERN, Geneva, Switzerland); Aleksandrov, I. N.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Alexa, C.(National Institute of Physics and Nuclear Engineering, Bucharest, Romania; Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; University Politehnica Bucharest, Bucharest, Romania; West University in Timisoara, Timisoara, Romania); Alexander, G.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Alexandre, G.(Section de Physique, Université de Genève, Geneva, Switzerland); Alexopoulos, T.(Physics Department, National Technical University of Athens, Zografou, Greece); Alhroob, M.(INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ICTP, Trieste, Italy; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy); Alimonti, G.(INFN Sezione di Milano, Milan, Italy; Dipartimento di Fisica, Università di Milano, Milan, Italy); Alio, L.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Alison, J.(Enrico Fermi Institute, University of Chicago, Chicago, IL, USA); Allbrooke, B. M. M.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Allison, L. J.(Physics Department, Lancaster University, Lancaster, UK); Allport, P. P.(Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK); Almond, J.(School of Physics and Astronomy, University of Manchester, Manchester, UK); Aloisio, A.(INFN Sezione di Napoli, Naples, Italy; Dipartimento di Fisica, Università di Napoli, Naples, Italy); Alonso, A.(Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark); Alonso, F.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Alpigiani, C.(School of Physics and Astronomy, Queen Mary University of London, London, UK); Altheimer, A.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Alvarez Gonzalez, B.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); Alviggi, M. G.(INFN Sezione di Napoli, Naples, Italy; Dipartimento di Fisica, Università di Napoli, Naples, Italy); Amako, K.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Amaral Coutinho, Y.(Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil); Amelung, C.(Department of Physics, Brandeis University, Waltham, MA, USA); Amidei, D.(Department of Physics, The University of Michigan, Ann Arbor, MI, USA); Amor Dos Santos, S. P.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Amorim, A.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Amoroso, S.(Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany); Amram, N.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Amundsen, G.(Department of Physics, Brandeis University, Waltham, MA, USA); Anastopoulos, C.(Department of Physics and Astronomy, University of Sheffield, Sheffield, UK); Ancu, L. S.(Section de Physique, Université de Genève, Geneva, Switzerland); Andari, N.(CERN, Geneva, Switzerland); Andeen, T.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Anders, C. F.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Anders, G.(CERN, Geneva, Switzerland); Anderson, K. J.(Enrico Fermi Institute, University of Chicago, Chicago, IL, USA); Andreazza, A.(INFN Sezione di Milano, Milan, Italy; Dipartimento di Fisica, Università di Milano, Milan, Italy); Andrei, V.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Anduaga, X. S.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Angelidakis, S.(Physics Department, University of Athens, Athens, Greece); Angelozzi, I.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Anger, P.(Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany); Angerami, A.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Anghinolfi, F.(CERN, Geneva, Switzerland); Anisenkov, A. V.(Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia); Anjos, N.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Annovi, A.(INFN Laboratori Nazionali di Frascati, Frascati, Italy); Antonaki, A.(Physics Department, University of Athens, Athens, Greece); Antonelli, M.(INFN Laboratori Nazionali di Frascati, Frascati, Italy); Antonov, A.(Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia); Antos, J.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Anulli, F.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Aoki, M.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Aperio Bella, L.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Apolle, R.(Department of Physics, Oxford University, Oxford, UK); Arabidze, G.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); Aracena, I.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Arai, Y.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Araque, J. P.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Arce, A. T. H.(Department of Physics, Duke University, Durham, NC, USA); Arguin, J-F.(Group of Particle Physics, University of Montreal, Montreal, QC, Canada); Argyropoulos, S.(DESY, Hamburg and Zeuthen, Germany); Arik, M.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Armbruster, A. J.(CERN, Geneva, Switzerland); Arnaez, O.(CERN, Geneva, Switzerland); Arnal, V.(Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain); Arnold, H.(Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany); Arratia, M.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Arslan, O.(Physikalisches Institut, University of Bonn, Bonn, Germany); Artamonov, A.(Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia); Artoni, G.(Department of Physics, Brandeis University, Waltham, MA, USA); Asai, S.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Asbah, N.(DESY, Hamburg and Zeuthen, Germany); Ashkenazi, A.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Åsman, B.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Asquith, L.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Assamagan, K.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Astalos, R.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Atkinson, M.(Department of Physics, University of Illinois, Urbana, IL, USA); Atlay, N. B.(Fachbereich Physik, Universität Siegen, Siegen, Germany); Auerbach, B.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Augsten, K.(Czech Technical University in Prague, Prague, Czech Republic); Aurousseau, M.(Department of Physics, University of Cape Town, Cape Town, South Africa; Department of Physics, University of Johannesburg, Johannesburg, South Africa; School of Physics, University of the Witwatersrand, Johannesburg, South Africa); Avolio, G.(CERN, Geneva, Switzerland); Azuelos, G.(Group of Particle Physics, University of Montreal, Montreal, QC, Canada); Azuma, Y.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Baak, M. A.(CERN, Geneva, Switzerland); Baas, A.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Bacci, C.(INFN Sezione di Roma Tre, Rome, Italy; Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy); Bachacou, H.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Bachas, K.(Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece); Backes, M.(CERN, Geneva, Switzerland); Backhaus, M.(CERN, Geneva, Switzerland); Backus Mayes, J.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Badescu, E.(National Institute of Physics and Nuclear Engineering, Bucharest, Romania; Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; University Politehnica Bucharest, Bucharest, Romania; West University in Timisoara, Timisoara, Romania); Bagiacchi, P.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Bagnaia, P.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Bai, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; Department of Physics, Nanjing University, Nanjing, Jiangsu, China; School of Physics, Shandong University, Jinan, Shandong, China; Physics Department, Shanghai Jiao Tong University, Shanghai, China); Bain, T.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Baines, J. T.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Baker, O. K.(Department of Physics, Yale University, New Haven, CT, USA); Balek, P.(Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic); Balli, F.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Banas, E.(The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland); Banerjee, Sw.(Department of Physics, University of Wisconsin, Madison, WI, USA); Bannoura, A. A. E.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Bansal, V.(Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada); Bansil, H. S.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Barak, L.(Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel); Baranov, S. P.(P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia); Barberio, E. L.(School of Physics, University of Melbourne, Parkville, VIC, Australia); Barberis, D.(INFN Sezione di Genova, Genoa, Italy; Dipartimento di Fisica, Università di Genova, Genova, Italy); Barbero, M.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Barillari, T.(Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany); Barisonzi, M.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Barklow, T.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Barlow, N.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Barnett, B. M.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Barnett, R. M.(Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA); Barnovska, Z.(LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France); Baroncelli, A.(INFN Sezione di Roma Tre, Rome, Italy; Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy); Barone, G.(Section de Physique, Université de Genève, Geneva, Switzerland); Barr, A. J.(Department of Physics, Oxford University, Oxford, UK); Barreiro, F.(Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain); Barreiro Guimarães da Costa, J.(Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA); Bartoldus, R.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Barton, A. E.(Physics Department, Lancaster University, Lancaster, UK); Bartos, P.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Bartsch, V.(Department of Physics and Astronomy, University of Sussex, Brighton, UK); Bassalat, A.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Basye, A.(Department of Physics, University of Illinois, Urbana, IL, USA); Bates, R. L.(SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK); Batley, J. R.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Battaglia, M.(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA); Battistin, M.(CERN, Geneva, Switzerland); Bauer, F.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Bawa, H. S.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Beattie, M. D.(Physics Department, Lancaster University, Lancaster, UK); Beau, T.(Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France); Beauchemin, P. H.(Department of Physics and Astronomy, Tufts University, Medford, MA, USA); Beccherle, R.(INFN Sezione di Pisa, Pisa, Italy; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy); Bechtle, P.(Physikalisches Institut, University of Bonn, Bonn, Germany); Beck, H. P.(Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland); Becker, K.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Becker, S.(Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany); Beckingham, M.(Department of Physics, University of Warwick, Coventry, UK); Becot, C.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Beddall, A. J.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Beddall, A.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Bedikian, S.(Department of Physics, Yale University, New Haven, CT, USA); Bednyakov, V. A.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Bee, C. P.(Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA); Beemster, L. J.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Beermann, T. A.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Begel, M.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Behr, K.(Department of Physics, Oxford University, Oxford, UK); Belanger-Champagne, C.(Department of Physics, McGill University, Montreal, QC, Canada); Bell, P. J.(Section de Physique, Université de Genève, Geneva, Switzerland); Bell, W. H.(Section de Physique, Université de Genève, Geneva, Switzerland); Bella, G.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Bellagamba, L.(INFN Sezione di Bologna, Bologna, Italy; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy); Bellerive, A.(Department of Physics, Carleton University, Ottawa, ON, Canada); Bellomo, M.(Department of Physics, University of Massachusetts, Amherst, MA, USA); Belotskiy, K.(Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia); Beltramello, O.(CERN, Geneva, Switzerland);handle: 2434/242885
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb −1 of LHC proton–proton collision data taken at centre-of-mass energies of s√=7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
CORE arrow_drop_down COREArticle . 2014License: CC BYFull-Text: https://eprints.gla.ac.uk/99642/2/99642.pdfData sources: COREEnlightenArticle . 2014License: CC BYFull-Text: http://eprints.gla.ac.uk/99642/2/99642.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2014Data sources: Oxford University Research ArchiveQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2434/242885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2014License: CC BYFull-Text: https://eprints.gla.ac.uk/99642/2/99642.pdfData sources: COREEnlightenArticle . 2014License: CC BYFull-Text: http://eprints.gla.ac.uk/99642/2/99642.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2014Data sources: Oxford University Research ArchiveQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2434/242885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Roberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; +95 AuthorsRoberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; Cang Hui; Albert Morera; Jean-François Bastin; Sergio de‐Miguel; Gert‐Jan Nabuurs; Jens‐Christian Svenning; Josep M. Serra‐Diaz; Cory Merow; Brian J. Enquist; Maria Kamenetsky; Jun‐Ho Lee; Jun Zhu; Jinyun Fang; Douglass F. Jacobs; Bryan C. Pijanowski; Arindam Banerjee; Robert Giaquinto; Giorgio Alberti; Angélica M. Almeyda Zambrano; Esteban Álvarez-Dávila; Alejandro Araujo‐Murakami; Valerio Avitabile; Gerardo Aymard; Radomir Bałazy; Christopher Baraloto; Jorcely Barroso; Meredith L. Bastian; Philippe Birnbaum; Robert Bitariho; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Francis Q. Brearley; Eben N. Broadbent; Filippo Bussotti; Wendeson Castro; Ricardo G. César; Goran Češljar; Víctor Chama Moscoso; Han Y. H. Chen; Emil Cienciala; Connie J. Clark; David A. Coomes; Selvadurai Dayanandan; Mathieu Decuyper; Laura E. Dee; Jhon del Aguila‐Pasquel; Géraldine Derroire; Marie Noël Kamdem Djuikouo; Tran Van Do; Jiří Doležal; Ilija Đorđević; Julien Engel; Tom Fayle; Ted R. Feldpausch; Jonas Fridman; David J. Harris; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; Martin Herold; Thomas Ibanez; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Kathryn J. Jeffery; Vivian Kvist Johannsen; Tommaso Jucker; Ahto Kangur; Victor Karminov; Kuswata Kartawinata; Deborah K. Kennard; Sebastian Kepfer‐Rojas; Gunnar Keppel; Mohammed Latif Khan; P. K. Khare; Timothy J Kileen; Hyun Seok Kim; Henn Korjus; Amit Kumar; Ashwani Kumar; Diana Laarmann; Nicolas Labrière; Mait Lang; Simon L. Lewis; Brian S. Maitner; Yadvinder Malhi; Andrew R. Marshall; Olga Martynenko; Abel L. Monteagudo Mendoza; Petr Ontikov; Edgar Ortiz‐Malavasi; Nadir Carolina Pallqui Camacho; Alain Paquette; Minjee Park;L'une des questions les plus fondamentales en écologie est de savoir combien d'espèces habitent la Terre. Cependant, en raison des défis logistiques et financiers massifs et des difficultés taxonomiques liées à la définition du concept d'espèce, le nombre global d'espèces, y compris celles des formes de vie importantes et bien étudiées telles que les arbres, reste encore largement inconnu. Ici, sur la base de données mondiales provenant de sources terrestres, nous estimons la richesse totale des espèces d'arbres aux niveaux mondial, continental et du biome. Nos résultats indiquent qu'il y a environ73 000 espèces d'arbres dans le monde, parmi lesquelles environ9 000 espèces d'arbres n'ont pas encore été découvertes. Environ 40 % des espèces d'arbres non découvertes se trouvent en Amérique du Sud. En outre, près d'un tiers de toutes les espèces d'arbres à découvrir peuvent être rares, avec des populations très faibles et une répartition spatiale limitée (probablement dans les basses terres tropicales et les montagnes éloignées). Ces résultats mettent en évidence la vulnérabilité de la biodiversité forestière mondiale aux changements anthropiques dans l'utilisation des terres et le climat, qui menacent de manière disproportionnée les espèces rares et donc la richesse mondiale en arbres. Una de las preguntas más fundamentales en ecología es cuántas especies habitan la Tierra. Sin embargo, debido a los enormes desafíos logísticos y financieros y a las dificultades taxonómicas relacionadas con la definición del concepto de especie, el número global de especies, incluidas las de formas de vida importantes y bien estudiadas, como los árboles, sigue siendo en gran medida desconocido. Aquí, con base en datos globales de fuentes terrestres, estimamos la riqueza total de especies de árboles a nivel global, continental y de biomas. Nuestros resultados indican que hay ~73,000 especies de árboles a nivel mundial, entre las cuales ~9,000 especies de árboles aún no se han descubierto. Aproximadamente el 40% de las especies de árboles no descubiertas se encuentran en América del Sur. Además, casi un tercio de todas las especies de árboles por descubrir pueden ser raras, con poblaciones muy bajas y una distribución espacial limitada (probablemente en tierras bajas y montañas tropicales remotas). Estos hallazgos ponen de relieve la vulnerabilidad de la biodiversidad forestal mundial a los cambios antropogénicos en el uso de la tierra y el clima, que amenazan desproporcionadamente a las especies raras y, por lo tanto, a la riqueza arbórea mundial. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. أحد أهم الأسئلة الأساسية في علم البيئة هو عدد الأنواع التي تعيش على الأرض. ومع ذلك، نظرًا للتحديات اللوجستية والمالية الهائلة والصعوبات التصنيفية المرتبطة بتعريف مفهوم الأنواع، لا تزال الأعداد العالمية للأنواع، بما في ذلك أشكال الحياة المهمة والمدروسة جيدًا مثل الأشجار، غير معروفة إلى حد كبير. هنا، استنادًا إلى البيانات العالمية من مصادر أرضية، نقدر إجمالي ثراء أنواع الأشجار على المستويات العالمية والقارية والبيولوجية. تشير نتائجنا إلى أن هناك 73000 نوع من الأشجار على مستوى العالم، من بينها 9000 نوع من الأشجار لم يتم اكتشافها بعد. يوجد ما يقرب من 40 ٪ من أنواع الأشجار غير المكتشفة في أمريكا الجنوبية. علاوة على ذلك، قد يكون ما يقرب من ثلث جميع أنواع الأشجار التي سيتم اكتشافها نادرًا، مع أعداد قليلة جدًا وتوزيع مكاني محدود (على الأرجح في الأراضي المنخفضة والجبال الاستوائية النائية). تسلط هذه النتائج الضوء على ضعف التنوع البيولوجي العالمي للغابات أمام التغيرات البشرية المنشأ في استخدام الأراضي والمناخ، والتي تهدد بشكل غير متناسب الأنواع النادرة وبالتالي ثراء الأشجار العالمي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Embargo end date: 08 Feb 2019 Belgium, Norway, United Kingdom, Italy, Germany, United Kingdom, Portugal, United Kingdom, France, Brazil, United Kingdom, Germany, United Kingdom, United Kingdom, Australia, United Kingdom, United Kingdom, Brazil, France, United KingdomPublisher:Wiley Publicly fundedFunded by:UKRI | Global modelling of local..., FCT | LA 1, UKRI | RootDetect: Remote Detect... +1 projectsUKRI| Global modelling of local biodiversity responses to human impacts ,FCT| LA 1 ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,UKRI| Doctoral Training GrantLionel Hernández; Jodi L. Sedlock; Matthew J. Struebig; Vânia Proença; Eike Lena Neuschulz; Åke Berg; Martin Jung; Carolina L. Morales; Biagio D'Aniello; Kristoffer Hylander; Tom M. Fayle; Tom M. Fayle; Tom M. Fayle; Masahiro Ishitani; Carolina A. Robles; Vassiliki Kati; Virginia Aguilar-Barquero; Pedro Beja; Norbertas Noreika; Alexis Cerezo; Juan Paritsis; Szabolcs Sáfián; Nina Farwig; Steven J. Presley; Jörg Brunet; Oliver Schweiger; Thibault Lachat; T. Keith Philips; Igor Lysenko; Nick A. Littlewood; Stephen J. Rossiter; William Oduro; Kiril Vassilev; Michelle L K Harrison; Robert M. Ewers; Loreta Rosselli; Ulrika Samnegård; Felix Herzog; Alvin J. Helden; James I. Watling; Niall O'Dea; Olivia Norfolk; Víctor H. Luja; Carlos A. Peres; Eliana Martínez; Michael R. Willig; Jimmy Cabra-García; Douglas Sheil; Douglas Sheil; J. Leighton Reid; Tim Diekötter; Tim Diekötter; Nicolás Pelegrin; Antonio Felicioli; Lauchlan H. Fraser; Hollie Booth; Hollie Booth; Gilbert B. Adum; Grzegorz Mikusiński; Victoria Lantschner; Paola J. Isaacs-Cubides; Nor Rasidah Hashim; Annika M. Felton; Lawrence N. Hudson; Tibor Magura; Susan G. Letcher; Akihiro Nakamura; Anelena L Carvalho; Birgit Jauker; Béla Tóthmérész; Neil Aldrin D. Mallari; Neil Aldrin D. Mallari; Marco Silva Gottschalk; Eleanor M. Slade; Andrey S. Zaitsev; Shoji Naoe; Carsten F. Dormann; Mats Jonsell; Diego Higuera-Diaz; Lars Edenius; Péter Batáry; Violette Le Féon; Ben Darvill; Alain Dejean; Alain Dejean; Erin M. Bayne; Carlos H. Vergara; Luz Piedad Romero-Duque; Mick E. Hanley; Christopher D. Williams; Christian Hébert; Isabel Brito; Rolando Cerda; Yana T. Reis; Gretchen LeBuhn; Erika Buscardo; Erika Buscardo; Bertrand Dumont; James R. Miller; Jenni G. Garden; Lucinda Kirkpatrick; Allan H. Smith-Pardo; Allan H. Smith-Pardo; Dario Furlani; John-André Henden; Jochen H. Bihn; Yik Hei Sung; James Grogan; Manuel Esteban Lucas-Borja; John C. Z. Woinarski; Ádám Kőrösi; Ádám Kőrösi; Kaoru Maeto; Gábor L. Lövei; Stefan Abrahamczyk; Paolo Giordani; Lander Baeten; Morgan Garon; Argyrios Choimes; Argyrios Choimes; Danilo Bandini Ribeiro; Inge Armbrecht; Laurent Rousseau; Theodora Petanidou; Helena Castro; Mary N Muchane; Nicole M. Nöske; Nicholas J. Berry; Fernando A. B. Silva; Guiomar Nates-Parra; Pedro Giovâni da Silva; Muchai Muchane; Hannah J. White; Mats Dynesius; Bruno K. C. Filgueiras; Eric Katovai; Jörg U. Ganzhorn; Mounir Louhaichi; Christof Schüepp; Jort Verhulst; Stuart Connop; Matthieu Chauvat; Vena Kapoor; Katja Poveda; Marcelo A. Aizen; Eva Knop; Jörn P. W. Scharlemann; Jörn P. W. Scharlemann; Caragh G. Threlfall; Aaron D. Gove; Aaron D. Gove; Jonathan P. Sadler; Job Aben; Daniel F. R. Cleary; Erika Marin-Spiotta; Caleb Ofori-Boateng; Caleb Ofori-Boateng; Victoria Kemp; Dario A Navarrete Gutierrez; Francis Q. Brearley; Yanping Wang; David L P Correia; Jean-Philippe Légaré; Marino Quaranta; Gentile Francesco Ficetola; Adam J. Vanbergen; Zoltán Elek; Sydney A. Cameron; Jane C. Stout; Chris O. Oke; Ben Collen; Jorge Ari Noriega; Jörg Römbke; Ramón A. Sosa; Simon G. Dures; Simon G. Dures; Alejandro A. Castro-Luna; Joseph E. Hawes; Joseph E. Hawes; Adriana De Palma; Adriana De Palma; Steven J. Fonte; Hans Verboven; Marc Ancrenaz; Andy Purvis; Andy Purvis; Helen Phillips; Helen Phillips; Barbara A. Richardson; Daisuke Fukuda; Carlos A. López-Quintero; Yuan Pan; Badrul Azhar; Katrin Böhning-Gaese; Alejandro Parra-H; Alejandro Parra-H; Ben Phalan; Rebecca A. Senior; Navjot S. Sodhi; Jos Barlow;doi: 10.17863/cam.36177
pmc: PMC4278822
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
CORE arrow_drop_down Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1002/ece3.1303Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/23623Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/68192Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/11343/263351Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYRepositório Institucional da Universidade de AveiroArticle . 2014Data sources: Repositório Institucional da Universidade de AveiroHochschulschriftenserver - Universität Frankfurt am MainArticle . 2017Data sources: Hochschulschriftenserver - Universität Frankfurt am MainMunin - Open Research ArchiveArticle . 2014 . Peer-reviewedData sources: Munin - Open Research ArchiveQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.36177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 87visibility views 87 download downloads 186 Powered bymore_vert CORE arrow_drop_down Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1002/ece3.1303Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/23623Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/68192Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/11343/263351Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYRepositório Institucional da Universidade de AveiroArticle . 2014Data sources: Repositório Institucional da Universidade de AveiroHochschulschriftenserver - Universität Frankfurt am MainArticle . 2017Data sources: Hochschulschriftenserver - Universität Frankfurt am MainMunin - Open Research ArchiveArticle . 2014 . Peer-reviewedData sources: Munin - Open Research ArchiveQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.36177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Other literature type , Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:OpenAlex Funded by:EC | HYPERION, UKRI | Equipment Account: Integr..., UKRI | Centre for Advanced Mater... +3 projectsEC| HYPERION ,UKRI| Equipment Account: Integrated Thin Film Deposition and Analysis System ,UKRI| Centre for Advanced Materials for Integrated Energy Systems (CAM-IES) ,UKRI| Nanocomposite Oxide Thin Films For Novel Ionotronic Magnetoelectrics ,UKRI| Affordable Perovskite Solar Irrigation Systems for Small-holder Farmers in Ethiopia (APSISSFE) ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Satyaprasad P. Senanayak; Krishanu Dey; Ravichandran Shivanna; Weiwei Li; Dibyajyoti Ghosh; Bart Roose; Youcheng Zhang; Zahra Andaji‐Garmaroudi; Nikhil Tiwale; Judith Driscoll; Richard H. Friend; Samuel D. Stranks; Henning Sirringhaus;arXiv: 2202.02553
L'étude du comportement inhérent au transport de charge induit par le champ des pérovskites d'halogénure de plomb 3D est restée en grande partie une tâche difficile, principalement en raison des effets indésirables de la migration ionique près de la température ambiante. En outre, la présence de méthylammonium dans de nombreuses compositions de pérovskite 3D hautement performantes introduit des instabilités supplémentaires, qui limitent le fonctionnement fiable des dispositifs optoélectroniques à température ambiante. Ici, nous abordons ces deux défis et démontrons que les transistors à effet de champ (FET) à base de compositions de pérovskite sans méthylammonium et à métaux mélangés (Pb/Sn), qui sont largement étudiés pour les applications de cellules solaires et de diodes électroluminescentes, ne souffrent pas d'effets de migration ionique comme leurs homologues Pb purs et présentent de manière fiable un transport de type p sans hystérésis avec une mobilité élevée atteignant 5,4 $cm^2/Vs$ , un rapport ON/OFF approchant 10 $ ^6 $ et une conductance de canal normalisée de 3 S/m. La migration ionique réduite se manifeste également par une dépendance à la température activée de la mobilité à effet de champ avec une faible énergie d'activation, ce qui reflète une densité significative de défauts électroniques peu profonds. Nous visualisons la migration ionique dans le plan supprimée dans les pérovskites contenant du Sn par rapport à leurs homologues de Pb pur en utilisant la microscopie à photoluminescence sous polarisation et démontrons des stabilités opérationnelles prometteuses du dispositif de tension et de contrainte de courant. Notre travail établit les FET comme une excellente plate-forme pour fournir des informations fondamentales sur le dopage, les défauts et la physique du transport de charge des semi-conducteurs à pérovskite halogénure de métal mélangé afin de faire progresser leurs applications dans les dispositifs optoélectroniques. La investigación del comportamiento inherente de transporte de carga impulsado por el campo de las perovskitas de haluro de plomo 3D ha seguido siendo en gran medida una tarea difícil, debido principalmente a los efectos indeseables de la migración iónica cerca de la temperatura ambiente. Además, la presencia de metilamonio en muchas composiciones de perovskita 3D de alto rendimiento introduce inestabilidades adicionales, que limitan el funcionamiento confiable del dispositivo optoelectrónico a temperatura ambiente. Aquí, abordamos ambos desafíos y demostramos que los transistores de efecto de campo (FET) basados en composiciones de perovskita de metal mixto (Pb/Sn) sin metilamonio, que se estudian ampliamente para aplicaciones de células solares y diodos emisores de luz, no sufren efectos de migración de iones como sus contrapartes de Pb puro y exhiben de manera confiable transporte de tipo p libre de histéresis con una alta movilidad que alcanza los 5.4 $cm^2/Vs$, una relación de encendido/APAGADO cercana a $ 10^6 $ y una conductancia de canal normalizada de 3 S/m. La migración iónica reducida también se manifiesta en una dependencia de la temperatura activada de la movilidad del efecto de campo con baja energía de activación, lo que refleja una densidad significativa de defectos electrónicos poco profundos. Visualizamos la migración iónica suprimida en el plano en perovskitas que contienen Sn en comparación con sus contrapartes de Pb puro utilizando microscopía de fotoluminiscencia bajo polarización y demostramos estabilidades operativas prometedoras del dispositivo de tensión y corriente. Nuestro trabajo establece los FET como una excelente plataforma para proporcionar información fundamental sobre el dopaje, los defectos y la física del transporte de carga de los semiconductores de perovskita de haluro de metal mixto para avanzar en sus aplicaciones en dispositivos optoelectrónicos. Investigation of the inherent field-driven charge transport behaviour of 3D lead halide perovskites has largely remained a challenging task, owing primarily to undesirable ionic migration effects near room temperature. In addition, the presence of methylammonium in many high performing 3D perovskite compositions introduces additional instabilities, which limit reliable room temperature optoelectronic device operation. Here, we address both these challenges and demonstrate that field-effect transistors (FETs) based on methylammonium-free, mixed-metal (Pb/Sn) perovskite compositions, that are widely studied for solar cell and light-emitting diode applications, do not suffer from ion migration effects as their pure Pb counterparts and reliably exhibit hysteresis free p-type transport with high mobility reaching 5.4 $cm^2/Vs$, ON/OFF ratio approaching $10^6$, and normalized channel conductance of 3 S/m. The reduced ion migration is also manifested in an activated temperature dependence of the field-effect mobility with low activation energy, which reflects a significant density of shallow electronic defects. We visualize the suppressed in-plane ionic migration in Sn-containing perovskites compared to their pure-Pb counterparts using photoluminescence microscopy under bias and demonstrate promising voltage and current-stress device operational stabilities. Our work establishes FETs as an excellent platform for providing fundamental insights into the doping, defect and charge transport physics of mixed-metal halide perovskite semiconductors to advance their applications in optoelectronic devices. ظل التحقيق في سلوك نقل الشحنة المتأصل الذي يحركه المجال لبيروفسكايت الرصاص ثلاثي الأبعاد مهمة صعبة إلى حد كبير، ويرجع ذلك في المقام الأول إلى تأثيرات الهجرة الأيونية غير المرغوب فيها بالقرب من درجة حرارة الغرفة. بالإضافة إلى ذلك، فإن وجود الميثيل أمونيوم في العديد من تركيبات البيروفسكايت ثلاثية الأبعاد عالية الأداء يؤدي إلى عدم استقرار إضافي، مما يحد من تشغيل الجهاز الإلكتروني البصري الموثوق في درجة حرارة الغرفة. هنا، نتصدى لكل من هذه التحديات ونوضح أن الترانزستورات ذات التأثير الميداني (FETs) القائمة على تركيبات البيروفسكايت الخالية من الميثيل أمونيوم والمختلطة المعادن (Pb/SN)، والتي تتم دراستها على نطاق واسع للخلايا الشمسية وتطبيقات الصمام الثنائي الباعث للضوء، لا تعاني من تأثيرات هجرة الأيونات كنظيراتها النقية من Pb وتظهر بشكل موثوق نقل p - type الخالي من التباطؤ مع حركة عالية تصل إلى 5.4 $cm^2/Vs$، ونسبة ON/OFF تقترب من $ 10^6 $، وتوصيل القناة الطبيعي لـ 3 S/m. تتجلى هجرة الأيونات المنخفضة أيضًا في الاعتماد المنشط على درجة الحرارة لحركة التأثير الميداني مع طاقة تنشيط منخفضة، مما يعكس كثافة كبيرة من العيوب الإلكترونية الضحلة. نتصور الهجرة الأيونية المكبوتة داخل الطائرة في البيروفسكايت المحتوية على Sn مقارنة بنظيراتها النقية من Pb باستخدام المجهر الضوئي تحت التحيز ونوضح الثبات التشغيلي الواعد للجهد وجهاز الإجهاد الحالي. يؤسس عملنا FETs كمنصة ممتازة لتوفير رؤى أساسية في فيزياء نقل المنشطات والعيوب والشحن لأشباه موصلات هاليد البيروفسكايت المختلطة المعادن لتعزيز تطبيقاتها في الأجهزة الإلكترونية الضوئية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/ge222-vx120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/ge222-vx120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 2017 Italy, Italy, Germany, United Kingdom, United Kingdom, France, United Kingdom, Germany, United Kingdom, Italy, United KingdomPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAndrea Bocci; Adomas Jelinskas; Vasiliki A Mitsou; Ryunosuke Iguchi; Teresa Lenz; Srinivasan Rajagopalan; Axel König; Markus Nordberg; Jos Vermeulen; Antonio Policicchio; Louis Helary; Bartosz Sebastian Dziedzic; Johannes Erdmann; Caterina Doglioni; Fernando Barreiro; Stefan Schlenker; Kunihiro Nagano; Tulin Varol; Alexander Khodinov; Brian Alexander Long; Eckhard von Toerne; Edisher Tskhadadze; Scott Snyder; Geert-Jan Besjes; Dms Sultan; Richard Nickerson; Hector De la Torre; David Hohn; Liza Mijović; Sebastien Prince; Anjishnu Bandyopadhyay; Carlo Varni; Tony Doyle; Arthur James Horton; Maximiliano Sioli; Urmila Soldevila; Marcia Begalli; Bruce Barnett; Tomas Slavicek; Elizabeth Brost; Alexander Zaitsev; Matteo Franchini; Yohei Yamaguchi; S. R. Hou; Blake Burghgrave; Trygve Buanes; Alvaro Lopez Solis; Yuri Kulchitsky; Michael Begel; Dilia Maria Portillo Quintero; Marco Milesi; Simon Berlendis; Olivier Le Dortz; Yoshiji Yasu; Antonio Limosani; Kun Liu; Mario Lassnig; Emily Nurse; Alessandro Cerri; Kaushik De; Maximilian Hils; Bogdan Malaescu; Yosuke Takubo; M. Franklin; Jacob Searcy; Nicolas Viaux Maira; Michael Rijssenbeek; Tairan Xu; Christian Weiser; Claire Gwenlan; Steve McMahon; Matthew Berg Epland; Edward Moyse; Michael David Werner; Jie Yu; Jorge Lopez; David Lynn; Borut Paul Kerševan; Martin Spousta; Clara Troncon; Jing Wang; Giacinto Piacquadio; Karel Smolek; Fabio Cerutti; Dimitrios Iliadis; Xiandong Zhao; Peter van Gemmeren; Stamatios Gkaitatzis; Sergei Chekanov; Tsz Yu Ng; Yoav Afik; David Francis; Ralf Hertenberger; Michael Adersberger; Maia Mosidze; David Vazquez Furelos; Vincent Pascuzzi; Andreas Petridis; Timothy Barklow; Nurcan Ozturk; Debarati Roy; Simonetta Gentile; Shuwei Ye; Wenhao Xu; Laurent Vacavant; Sabrina Sacerdoti; Stewart Martin-Haugh; Peter Krieger; Cunfeng Feng; Hasko Stenzel; Rui Zhang; Hal Evans; Angela Maria Burger; Mykhailo Lisovyi; Robert Richter; Rajaa Cherkaoui El Moursli; Matteo Negrini; Pavol Strizenec; Asma Hadef; C. Haber; Sabrina Groh; Andrea Rodriguez Perez; William Joseph Johnson; Koji Terashi; Mirkoantonio Casolino; James Ferrando; Jennifer Kathryn Roloff; Emma Torró Pastor; Piotr Andrzej Janus; Attila Krasznahorkay; P. Sinervo; Gabriella Gaudio; Shunichi Akatsuka; R. D. Kass; Alexander Cheplakov; Ping-Kun Teng; Cyril Becot; Haonan Lu; Phillip Gutierrez; Andrea Ventura; Nikolai Fomin; Dominic Hirschbuehl; Yun-Ju Lu; Cristian Stanescu; Francisca Garay Walls; Kuan-yu Lin; Baojia Tong; Huan Ren; Tomas Davidek; Stefan Kluth; Mikhail Ivanovitch Gostkin; Kilian Rosbach; James Robinson; Werner Wiedenmann; Stephanie Majewski; Michael Düren; Noemi Calace; Aaron James Armbruster; Anatoly Kozhin; Petr Gallus; Huacheng Cai; Katsufumi Sato; Pawel Malecki; Andrea Sansoni; Chiao-ying Lin; Attilio Picazio; Monika Wielers; Sarah Williams; Regina Moles-Valls; Frank Winklmeier; Ljiljana Simic; Boris Lemmer; Stephen Lloyd; Jane Cummings; Eric Hayato Takasugi; Wendy Taylor; Antonio Onofre; Dmitriy Maximov; Felix Mueller; Katharina Schleicher; Elisabetta Vilucchi; Qun Ouyang; Deepak Kar; Nacim Haddad; German D Carrillo-Montoya; Sina Bahrasemani; Masahiro Kuze; Harinder Singh Bawa; Daniel Joseph Antrim; Carl Jeske; Rebecca Anne Linck; Paolo Francavilla; Ruchi Gupta; Kristof Schmieden; Federico Lasagni Manghi; Sergey Denisov; Alexander Kupco; Ian Connelly; Peter Watkins; Giuliano Gustavino;handle: 2434/587222 , 11571/1270926 , 2108/197596
A measurement of the production of three isolated photons in proton–proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{−1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system. Physics letters / B 781, 55 - 76 (2018). doi:10.1016/j.physletb.2018.03.057 Published by North-Holland Publ., Amsterdam
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 28 Mar 2022 United KingdomPublisher:National Academy of Sciences Funded by:EC | RESPONDER, UKRI | Subglacial Access and Fas...EC| RESPONDER ,UKRI| Subglacial Access and Fast Ice Research Experiment (SAFIRE): Resolving the Basal Control on Ice Flow and Calving in GreenlandYoung, Tun Jan; Christoffersen, Poul; Bougamont, Marion; Tulaczyk, Slawek; Mankoff, Kenneth; Nicholls, Keith; Stewart, Craig;doi: 10.17863/cam.82846
Subglacial hydrologic systems regulate ice sheet flow, causing acceleration or deceleration depending on hydraulic efficiency and the rate at which surface meltwater is delivered to the bed. Because these systems are rarely observed, ice sheet basal drainage represents a poorly integrated and uncertain component of models used to predict sea-level changes. Here, we report radar-derived basal melt rates and unexpectedly warm subglacial conditions beneath a large Greenlandic outlet glacier. The basal melt rates averaged 14 mm d−1 over 4 months, peaking at 57 mm d−1 when basal wa-ter temperature reached +0.88 C in a nearby borehole. We attribute both observations to the conversion of potential energy of surface water as heat in the basal drainage system, which peaked during a period of rainfall and intense surface melting. Our findings reveal limitations in the theory of channel formation and we show that viscous dissipation far surpasses other basal heat sources, even in a distributed, high-pressure system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.82846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 61 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.82846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetSognnaes, Ida; Gambhir, Ajay; Van de Ven, Dirk-Jan; Nikas, Alexandros; Anger-Kraavi, Annela; Bui, Ha; Campagnolo, Lorenza; Delpiazzo, Elisa; Doukas, Haris; Giarola, Sara; Grant, Neil; Hawkes, Adam; K��berle, Alexandre C.; Kolpakov, Andrey; Mittal, Shivika; Moreno, Jorge; Perdana, Sigit; Rogelj, Joeri; Vielle, Marc; Peters, Glen P.;This dataset contains the underlying data for the following publication: I. Sognnaes, A. Gambhir, D.-J. Van de Ven, A. Nikas, A. Anger-Kraavi, H. Bui, L. Campagnolo, E. Delpiazzo, H. Doukas, S. Giarola, N. Grant, A. Hawkes, A. Koberle, A. Kolpakov, S. Mittal, J. Moreno, S. Perdana, J. Rogelj, M. Vielle, & G.P. Peters. (2021). A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5528951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5528951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetGiarola, Sara; Mittal, Shivika; Vielle, Marc; Perdana, Sigit; Campagnolo, Lorenza; Delpiazzo, Elisa; Bui, Ha; Anger-Kraavi, Annela; Koplakov, Andrey; Sognnaes, Ida; Peters, Glen; Hawkes, Adam; K��berle, Alexandre; Grant, Neil; Gambhir, Ajay; Nikas, Alexandros; Doukas, Haris; Moreno, Jorge; van de Ven, Dirk-Jan;This dataset contains the underlying data for the following publication: Giarola, S., Mittal, S., Vielle, M., Perdana, S., Campagnolo, L., Delpiazzo, E., ... & van de Ven, D. J. (2021). Challenges in the harmonisation of global integrated assessment models: A comprehensive methodology to reduce model response heterogeneity. Science of the Total Environment, 783, 146861. https://doi.org/10.1016/j.scitotenv.2021.146861.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5659438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5659438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 16 Nov 2022 United KingdomPublisher:Nature Research Funded by:EC | SOLARX, UKRI | Harnessing vibration-indu..., UKRI | Long-Range Charge and Ene...EC| SOLARX ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Long-Range Charge and Energy Transfer at Heterojunctions for Photovoltaics Beyond the Shockley-Queisser LimitAuthors: Rao, Akshay; Ashoka, Arjun; Gauriot, Nicolas; Schnedermann, Christoph;We present quantitative ultrafast interferometric pump-probe microscopy capable of tracking of photoexcitations with sub 10 nm spatial precision in three dimensions with 15 fs temporal reso- lution, through retrieval of the full transient photoinduced complex refractive index. We use this methodology to study the spatiotemporal dynamics of the quantum coherent photophysical process of ultrafast singlet exciton fission. Measurements on microcrystalline pentacene films grown on glass (SiO2) and boron nitride (hBN) reveal a 25 nm, 70 fs expansion of the joint-density-of-states along the crystal a,c-axes accompanied by a 6 nm, 115 fs change in the exciton density along the crystal b-axis. We propose that photogenerated singlet excitons expand along the direction of max- imal orbital π-overlap in the crystal a,c-plane to form correlated triplet pairs, which subsequently electronically decouples into free triplets along the crystal b-axis due to molecular sliding motion of neighbouring pentacene molecules. Our methodology lays the foundation for the study of three dimensional transport on ultrafast timescales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 55visibility views 55 download downloads 108 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Lidong Mo; Constantin M. Zohner; Peter B. Reich; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Susanne S. Renner; Johan van den Hoogen; Arnan Araza; Martin Herold; Leila Mirzagholi; Haozhi Ma; Colin Averill; Oliver L. Phillips; Javier G. P. Gamarra; Iris Hordijk; Devin Routh; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Iêda Leão do Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard Corredor; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Héctor; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Nobuo Imai; Andrzej M. Jagodziński;Résumé Les forêts sont un puits de carbone terrestre important, mais les changements anthropiques dans l'utilisation des terres et le climat ont considérablement réduit l'échelle de ce système 1 . Les estimations de télédétection pour quantifier les pertes de carbone des forêts mondiales 2–5 sont caractérisées par une incertitude considérable et nous manquons d'une évaluation complète de source terrestre pour comparer ces estimations. Ici, nous combinons plusieurs approches provenant de sources terrestres 6 et satellitaires 2,7,8 pour évaluer l'échelle du potentiel mondial de carbone forestier en dehors des terres agricoles et urbaines. Malgré les variations régionales, les prévisions ont démontré une cohérence remarquable à l'échelle mondiale, avec seulement une différence de 12 % entre les estimations provenant de sources terrestres et celles provenant de satellites. À l'heure actuelle, le stockage mondial du carbone forestier est nettement inférieur au potentiel naturel, avec un déficit total de 226 Gt (gamme de modèles = 151–363 Gt) dans les zones à faible empreinte humaine. La majeure partie (61 %, 139 Gt C) de ce potentiel se trouve dans des zones forestières existantes, dans lesquelles la protection des écosystèmes peut permettre aux forêts de se rétablir jusqu'à maturité. Les 39 % restants (87 Gt C) du potentiel se trouvent dans des régions où les forêts ont été enlevées ou fragmentées. Bien que les forêts ne puissent pas remplacer les réductions d'émissions, nos résultats soutiennent l'idée 2,3,9 que la conservation, la restauration et la gestion durable de diverses forêts offrent des contributions précieuses à la réalisation des objectifs mondiaux en matière de climat et de biodiversité. Resumen Los bosques son un importante sumidero de carbono terrestre, pero los cambios antropogénicos en el uso de la tierra y el clima han reducido considerablemente la escala de este sistema 1 . Las estimaciones de teledetección para cuantificar las pérdidas de carbono de los bosques globales 2–5 se caracterizan por una incertidumbre considerable y carecemos de una evaluación exhaustiva de fuentes terrestres para comparar estas estimaciones. Aquí combinamos varios enfoques de fuentes terrestres 6 y derivados de satélites 2,7,8 para evaluar la escala del potencial global de carbono forestal fuera de las tierras agrícolas y urbanas. A pesar de la variación regional, las predicciones demostraron una consistencia notable a escala global, con solo una diferencia del 12% entre las estimaciones de fuentes terrestres y las derivadas de satélites. En la actualidad, el almacenamiento global de carbono forestal se encuentra marcadamente por debajo del potencial natural, con un déficit total de 226 Gt (rango del modelo = 151-363 Gt) en áreas con baja huella humana. La mayor parte (61%, 139 Gt C) de este potencial se encuentra en áreas con bosques existentes, en las que la protección de los ecosistemas puede permitir que los bosques se recuperen hasta la madurez. El 39% restante (87 Gt C) del potencial se encuentra en regiones en las que los bosques han sido eliminados o fragmentados. Aunque los bosques no pueden ser un sustituto de las reducciones de emisiones, nuestros resultados respaldan la idea 2,3,9 de que la conservación, restauración y gestión sostenible de bosques diversos ofrece contribuciones valiosas para cumplir con los objetivos mundiales de clima y biodiversidad. Abstract Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1 . Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets. تعد الغابات المجردة بالوعة كربون أرضية كبيرة، لكن التغيرات البشرية في استخدام الأراضي والمناخ قللت بشكل كبير من حجم هذا النظام 1 . تتميز تقديرات الاستشعار عن بعد لقياس خسائر الكربون من الغابات العالمية 2–5 بقدر كبير من عدم اليقين ونفتقر إلى تقييم شامل من مصادر أرضية لقياس هذه التقديرات. هنا نجمع بين العديد من الأساليب الأرضية 6 والنهج المستمدة من الأقمار الصناعية 2،7،8 لتقييم حجم إمكانات الكربون في الغابات العالمية خارج الأراضي الزراعية والحضرية. على الرغم من التباين الإقليمي، أظهرت التوقعات اتساقًا ملحوظًا على نطاق عالمي، مع اختلاف بنسبة 12 ٪ فقط بين التقديرات الأرضية والتقديرات المستمدة من الأقمار الصناعية. في الوقت الحاضر، يكون التخزين العالمي للكربون في الغابات تحت الإمكانات الطبيعية بشكل ملحوظ، مع عجز إجمالي قدره 226 جيجا طن (نطاق النموذج = 151–363 جيجا طن) في المناطق ذات البصمة البشرية المنخفضة. وتوجد معظم هذه الإمكانات (61 ٪، 139 جيجا طن) في المناطق التي توجد بها غابات، حيث يمكن لحماية النظام الإيكولوجي أن تسمح للغابات بالتعافي إلى مرحلة النضج. تكمن نسبة 39 ٪ المتبقية (87 جيجا طن) من الإمكانات في المناطق التي تمت فيها إزالة الغابات أو تجزئتها. على الرغم من أن الغابات لا يمكن أن تكون بديلاً عن خفض الانبعاثات، إلا أن نتائجنا تدعم الفكرة 2،3،9 القائلة بأن الحفاظ على الغابات المتنوعة واستعادتها وإدارتها المستدامة تقدم مساهمات قيمة لتحقيق أهداف المناخ العالمي والتنوع البيولوجي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint , Other literature type 2014 United Kingdom, Italy, Italy, United Kingdom, Germany, United KingdomPublisher:Springer Nature Funded by:GSRIGSRIAuthors: CERN, 1211, Geneva 23, Switzerland; Aad, G.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Abbott, B.(Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA); Abdallah, J.(Institute of Physics, Academia Sinica, Taipei, Taiwan); +196 AuthorsCERN, 1211, Geneva 23, Switzerland; Aad, G.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Abbott, B.(Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA); Abdallah, J.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Abdel Khalek, S.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Abdinov, O.(Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan); Aben, R.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Abi, B.(Department of Physics, Oklahoma State University, Stillwater, OK, USA); Abolins, M.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); AbouZeid, O. S.(Department of Physics, University of Toronto, Toronto, ON, Canada); Abramowicz, H.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Abreu, H.(Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel); Abreu, R.(CERN, Geneva, Switzerland); Abulaiti, Y.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Acharya, B. S.(INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ICTP, Trieste, Italy; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy); Adamczyk, L.(Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland); Adams, D. L.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Adelman, J.(Department of Physics, Yale University, New Haven, CT, USA); Adomeit, S.(Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany); Adye, T.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Agatonovic-Jovin, T.(Institute of Physics, University of Belgrade, Belgrade, Serbia; Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia); Aguilar-Saavedra, J. A.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Agustoni, M.(Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland); Ahlen, S. P.(Department of Physics, Boston University, Boston, MA, USA); Ahmadov, F.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Aielli, G.(INFN Sezione di Roma Tor Vergata, Rome, Italy; Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy); Akerstedt, H.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Åkesson, T. P. A.(Fysiska institutionen, Lunds universitet, Lund, Sweden); Akimoto, G.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Akimov, A. V.(P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia); Alberghi, G. L.(INFN Sezione di Bologna, Bologna, Italy; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy); Albert, J.(Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada); Albrand, S.(Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France); Alconada Verzini, M. J.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Aleksa, M.(CERN, Geneva, Switzerland); Aleksandrov, I. N.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Alexa, C.(National Institute of Physics and Nuclear Engineering, Bucharest, Romania; Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; University Politehnica Bucharest, Bucharest, Romania; West University in Timisoara, Timisoara, Romania); Alexander, G.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Alexandre, G.(Section de Physique, Université de Genève, Geneva, Switzerland); Alexopoulos, T.(Physics Department, National Technical University of Athens, Zografou, Greece); Alhroob, M.(INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ICTP, Trieste, Italy; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy); Alimonti, G.(INFN Sezione di Milano, Milan, Italy; Dipartimento di Fisica, Università di Milano, Milan, Italy); Alio, L.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Alison, J.(Enrico Fermi Institute, University of Chicago, Chicago, IL, USA); Allbrooke, B. M. M.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Allison, L. J.(Physics Department, Lancaster University, Lancaster, UK); Allport, P. P.(Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK); Almond, J.(School of Physics and Astronomy, University of Manchester, Manchester, UK); Aloisio, A.(INFN Sezione di Napoli, Naples, Italy; Dipartimento di Fisica, Università di Napoli, Naples, Italy); Alonso, A.(Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark); Alonso, F.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Alpigiani, C.(School of Physics and Astronomy, Queen Mary University of London, London, UK); Altheimer, A.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Alvarez Gonzalez, B.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); Alviggi, M. G.(INFN Sezione di Napoli, Naples, Italy; Dipartimento di Fisica, Università di Napoli, Naples, Italy); Amako, K.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Amaral Coutinho, Y.(Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil); Amelung, C.(Department of Physics, Brandeis University, Waltham, MA, USA); Amidei, D.(Department of Physics, The University of Michigan, Ann Arbor, MI, USA); Amor Dos Santos, S. P.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Amorim, A.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Amoroso, S.(Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany); Amram, N.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Amundsen, G.(Department of Physics, Brandeis University, Waltham, MA, USA); Anastopoulos, C.(Department of Physics and Astronomy, University of Sheffield, Sheffield, UK); Ancu, L. S.(Section de Physique, Université de Genève, Geneva, Switzerland); Andari, N.(CERN, Geneva, Switzerland); Andeen, T.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Anders, C. F.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Anders, G.(CERN, Geneva, Switzerland); Anderson, K. J.(Enrico Fermi Institute, University of Chicago, Chicago, IL, USA); Andreazza, A.(INFN Sezione di Milano, Milan, Italy; Dipartimento di Fisica, Università di Milano, Milan, Italy); Andrei, V.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Anduaga, X. S.(Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina); Angelidakis, S.(Physics Department, University of Athens, Athens, Greece); Angelozzi, I.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Anger, P.(Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany); Angerami, A.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Anghinolfi, F.(CERN, Geneva, Switzerland); Anisenkov, A. V.(Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia); Anjos, N.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Annovi, A.(INFN Laboratori Nazionali di Frascati, Frascati, Italy); Antonaki, A.(Physics Department, University of Athens, Athens, Greece); Antonelli, M.(INFN Laboratori Nazionali di Frascati, Frascati, Italy); Antonov, A.(Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia); Antos, J.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Anulli, F.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Aoki, M.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Aperio Bella, L.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Apolle, R.(Department of Physics, Oxford University, Oxford, UK); Arabidze, G.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA); Aracena, I.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Arai, Y.(KEK, High Energy Accelerator Research Organization, Tsukuba, Japan); Araque, J. P.(Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Department of Physics, University of Coimbra, Coimbra, Portugal; Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; Departamento de Fisica, Universidade do Minho, Braga, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal); Arce, A. T. H.(Department of Physics, Duke University, Durham, NC, USA); Arguin, J-F.(Group of Particle Physics, University of Montreal, Montreal, QC, Canada); Argyropoulos, S.(DESY, Hamburg and Zeuthen, Germany); Arik, M.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Armbruster, A. J.(CERN, Geneva, Switzerland); Arnaez, O.(CERN, Geneva, Switzerland); Arnal, V.(Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain); Arnold, H.(Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany); Arratia, M.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Arslan, O.(Physikalisches Institut, University of Bonn, Bonn, Germany); Artamonov, A.(Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia); Artoni, G.(Department of Physics, Brandeis University, Waltham, MA, USA); Asai, S.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Asbah, N.(DESY, Hamburg and Zeuthen, Germany); Ashkenazi, A.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Åsman, B.(Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden); Asquith, L.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Assamagan, K.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Astalos, R.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Atkinson, M.(Department of Physics, University of Illinois, Urbana, IL, USA); Atlay, N. B.(Fachbereich Physik, Universität Siegen, Siegen, Germany); Auerbach, B.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Augsten, K.(Czech Technical University in Prague, Prague, Czech Republic); Aurousseau, M.(Department of Physics, University of Cape Town, Cape Town, South Africa; Department of Physics, University of Johannesburg, Johannesburg, South Africa; School of Physics, University of the Witwatersrand, Johannesburg, South Africa); Avolio, G.(CERN, Geneva, Switzerland); Azuelos, G.(Group of Particle Physics, University of Montreal, Montreal, QC, Canada); Azuma, Y.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Baak, M. A.(CERN, Geneva, Switzerland); Baas, A.(Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany); Bacci, C.(INFN Sezione di Roma Tre, Rome, Italy; Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy); Bachacou, H.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Bachas, K.(Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece); Backes, M.(CERN, Geneva, Switzerland); Backhaus, M.(CERN, Geneva, Switzerland); Backus Mayes, J.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Badescu, E.(National Institute of Physics and Nuclear Engineering, Bucharest, Romania; Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; University Politehnica Bucharest, Bucharest, Romania; West University in Timisoara, Timisoara, Romania); Bagiacchi, P.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Bagnaia, P.(INFN Sezione di Roma, Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy); Bai, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; Department of Physics, Nanjing University, Nanjing, Jiangsu, China; School of Physics, Shandong University, Jinan, Shandong, China; Physics Department, Shanghai Jiao Tong University, Shanghai, China); Bain, T.(Nevis Laboratory, Columbia University, Irvington, NY, USA); Baines, J. T.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Baker, O. K.(Department of Physics, Yale University, New Haven, CT, USA); Balek, P.(Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic); Balli, F.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Banas, E.(The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland); Banerjee, Sw.(Department of Physics, University of Wisconsin, Madison, WI, USA); Bannoura, A. A. E.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Bansal, V.(Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada); Bansil, H. S.(School of Physics and Astronomy, University of Birmingham, Birmingham, UK); Barak, L.(Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel); Baranov, S. P.(P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia); Barberio, E. L.(School of Physics, University of Melbourne, Parkville, VIC, Australia); Barberis, D.(INFN Sezione di Genova, Genoa, Italy; Dipartimento di Fisica, Università di Genova, Genova, Italy); Barbero, M.(CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France); Barillari, T.(Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany); Barisonzi, M.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Barklow, T.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Barlow, N.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Barnett, B. M.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK); Barnett, R. M.(Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA); Barnovska, Z.(LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France); Baroncelli, A.(INFN Sezione di Roma Tre, Rome, Italy; Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy); Barone, G.(Section de Physique, Université de Genève, Geneva, Switzerland); Barr, A. J.(Department of Physics, Oxford University, Oxford, UK); Barreiro, F.(Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain); Barreiro Guimarães da Costa, J.(Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA); Bartoldus, R.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Barton, A. E.(Physics Department, Lancaster University, Lancaster, UK); Bartos, P.(Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic); Bartsch, V.(Department of Physics and Astronomy, University of Sussex, Brighton, UK); Bassalat, A.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Basye, A.(Department of Physics, University of Illinois, Urbana, IL, USA); Bates, R. L.(SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK); Batley, J. R.(Cavendish Laboratory, University of Cambridge, Cambridge, UK); Battaglia, M.(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA); Battistin, M.(CERN, Geneva, Switzerland); Bauer, F.(DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France); Bawa, H. S.(SLAC National Accelerator Laboratory, Stanford, CA, USA); Beattie, M. D.(Physics Department, Lancaster University, Lancaster, UK); Beau, T.(Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France); Beauchemin, P. H.(Department of Physics and Astronomy, Tufts University, Medford, MA, USA); Beccherle, R.(INFN Sezione di Pisa, Pisa, Italy; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy); Bechtle, P.(Physikalisches Institut, University of Bonn, Bonn, Germany); Beck, H. P.(Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland); Becker, K.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Becker, S.(Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany); Beckingham, M.(Department of Physics, University of Warwick, Coventry, UK); Becot, C.(LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France); Beddall, A. J.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Beddall, A.(Department of Physics, Bogazici University, Istanbul, Turkey; Department of Physics, Dogus University, Istanbul, Turkey; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey); Bedikian, S.(Department of Physics, Yale University, New Haven, CT, USA); Bednyakov, V. A.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia); Bee, C. P.(Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA); Beemster, L. J.(Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands); Beermann, T. A.(Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany); Begel, M.(Physics Department, Brookhaven National Laboratory, Upton, NY, USA); Behr, K.(Department of Physics, Oxford University, Oxford, UK); Belanger-Champagne, C.(Department of Physics, McGill University, Montreal, QC, Canada); Bell, P. J.(Section de Physique, Université de Genève, Geneva, Switzerland); Bell, W. H.(Section de Physique, Université de Genève, Geneva, Switzerland); Bella, G.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Bellagamba, L.(INFN Sezione di Bologna, Bologna, Italy; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy); Bellerive, A.(Department of Physics, Carleton University, Ottawa, ON, Canada); Bellomo, M.(Department of Physics, University of Massachusetts, Amherst, MA, USA); Belotskiy, K.(Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia); Beltramello, O.(CERN, Geneva, Switzerland);handle: 2434/242885
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb −1 of LHC proton–proton collision data taken at centre-of-mass energies of s√=7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
CORE arrow_drop_down COREArticle . 2014License: CC BYFull-Text: https://eprints.gla.ac.uk/99642/2/99642.pdfData sources: COREEnlightenArticle . 2014License: CC BYFull-Text: http://eprints.gla.ac.uk/99642/2/99642.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2014Data sources: Oxford University Research ArchiveQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2434/242885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2014License: CC BYFull-Text: https://eprints.gla.ac.uk/99642/2/99642.pdfData sources: COREEnlightenArticle . 2014License: CC BYFull-Text: http://eprints.gla.ac.uk/99642/2/99642.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2014Data sources: Oxford University Research ArchiveQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2434/242885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Roberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; +95 AuthorsRoberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; Cang Hui; Albert Morera; Jean-François Bastin; Sergio de‐Miguel; Gert‐Jan Nabuurs; Jens‐Christian Svenning; Josep M. Serra‐Diaz; Cory Merow; Brian J. Enquist; Maria Kamenetsky; Jun‐Ho Lee; Jun Zhu; Jinyun Fang; Douglass F. Jacobs; Bryan C. Pijanowski; Arindam Banerjee; Robert Giaquinto; Giorgio Alberti; Angélica M. Almeyda Zambrano; Esteban Álvarez-Dávila; Alejandro Araujo‐Murakami; Valerio Avitabile; Gerardo Aymard; Radomir Bałazy; Christopher Baraloto; Jorcely Barroso; Meredith L. Bastian; Philippe Birnbaum; Robert Bitariho; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Francis Q. Brearley; Eben N. Broadbent; Filippo Bussotti; Wendeson Castro; Ricardo G. César; Goran Češljar; Víctor Chama Moscoso; Han Y. H. Chen; Emil Cienciala; Connie J. Clark; David A. Coomes; Selvadurai Dayanandan; Mathieu Decuyper; Laura E. Dee; Jhon del Aguila‐Pasquel; Géraldine Derroire; Marie Noël Kamdem Djuikouo; Tran Van Do; Jiří Doležal; Ilija Đorđević; Julien Engel; Tom Fayle; Ted R. Feldpausch; Jonas Fridman; David J. Harris; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; Martin Herold; Thomas Ibanez; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Kathryn J. Jeffery; Vivian Kvist Johannsen; Tommaso Jucker; Ahto Kangur; Victor Karminov; Kuswata Kartawinata; Deborah K. Kennard; Sebastian Kepfer‐Rojas; Gunnar Keppel; Mohammed Latif Khan; P. K. Khare; Timothy J Kileen; Hyun Seok Kim; Henn Korjus; Amit Kumar; Ashwani Kumar; Diana Laarmann; Nicolas Labrière; Mait Lang; Simon L. Lewis; Brian S. Maitner; Yadvinder Malhi; Andrew R. Marshall; Olga Martynenko; Abel L. Monteagudo Mendoza; Petr Ontikov; Edgar Ortiz‐Malavasi; Nadir Carolina Pallqui Camacho; Alain Paquette; Minjee Park;L'une des questions les plus fondamentales en écologie est de savoir combien d'espèces habitent la Terre. Cependant, en raison des défis logistiques et financiers massifs et des difficultés taxonomiques liées à la définition du concept d'espèce, le nombre global d'espèces, y compris celles des formes de vie importantes et bien étudiées telles que les arbres, reste encore largement inconnu. Ici, sur la base de données mondiales provenant de sources terrestres, nous estimons la richesse totale des espèces d'arbres aux niveaux mondial, continental et du biome. Nos résultats indiquent qu'il y a environ73 000 espèces d'arbres dans le monde, parmi lesquelles environ9 000 espèces d'arbres n'ont pas encore été découvertes. Environ 40 % des espèces d'arbres non découvertes se trouvent en Amérique du Sud. En outre, près d'un tiers de toutes les espèces d'arbres à découvrir peuvent être rares, avec des populations très faibles et une répartition spatiale limitée (probablement dans les basses terres tropicales et les montagnes éloignées). Ces résultats mettent en évidence la vulnérabilité de la biodiversité forestière mondiale aux changements anthropiques dans l'utilisation des terres et le climat, qui menacent de manière disproportionnée les espèces rares et donc la richesse mondiale en arbres. Una de las preguntas más fundamentales en ecología es cuántas especies habitan la Tierra. Sin embargo, debido a los enormes desafíos logísticos y financieros y a las dificultades taxonómicas relacionadas con la definición del concepto de especie, el número global de especies, incluidas las de formas de vida importantes y bien estudiadas, como los árboles, sigue siendo en gran medida desconocido. Aquí, con base en datos globales de fuentes terrestres, estimamos la riqueza total de especies de árboles a nivel global, continental y de biomas. Nuestros resultados indican que hay ~73,000 especies de árboles a nivel mundial, entre las cuales ~9,000 especies de árboles aún no se han descubierto. Aproximadamente el 40% de las especies de árboles no descubiertas se encuentran en América del Sur. Además, casi un tercio de todas las especies de árboles por descubrir pueden ser raras, con poblaciones muy bajas y una distribución espacial limitada (probablemente en tierras bajas y montañas tropicales remotas). Estos hallazgos ponen de relieve la vulnerabilidad de la biodiversidad forestal mundial a los cambios antropogénicos en el uso de la tierra y el clima, que amenazan desproporcionadamente a las especies raras y, por lo tanto, a la riqueza arbórea mundial. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. أحد أهم الأسئلة الأساسية في علم البيئة هو عدد الأنواع التي تعيش على الأرض. ومع ذلك، نظرًا للتحديات اللوجستية والمالية الهائلة والصعوبات التصنيفية المرتبطة بتعريف مفهوم الأنواع، لا تزال الأعداد العالمية للأنواع، بما في ذلك أشكال الحياة المهمة والمدروسة جيدًا مثل الأشجار، غير معروفة إلى حد كبير. هنا، استنادًا إلى البيانات العالمية من مصادر أرضية، نقدر إجمالي ثراء أنواع الأشجار على المستويات العالمية والقارية والبيولوجية. تشير نتائجنا إلى أن هناك 73000 نوع من الأشجار على مستوى العالم، من بينها 9000 نوع من الأشجار لم يتم اكتشافها بعد. يوجد ما يقرب من 40 ٪ من أنواع الأشجار غير المكتشفة في أمريكا الجنوبية. علاوة على ذلك، قد يكون ما يقرب من ثلث جميع أنواع الأشجار التي سيتم اكتشافها نادرًا، مع أعداد قليلة جدًا وتوزيع مكاني محدود (على الأرجح في الأراضي المنخفضة والجبال الاستوائية النائية). تسلط هذه النتائج الضوء على ضعف التنوع البيولوجي العالمي للغابات أمام التغيرات البشرية المنشأ في استخدام الأراضي والمناخ، والتي تهدد بشكل غير متناسب الأنواع النادرة وبالتالي ثراء الأشجار العالمي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Embargo end date: 08 Feb 2019 Belgium, Norway, United Kingdom, Italy, Germany, United Kingdom, Portugal, United Kingdom, France, Brazil, United Kingdom, Germany, United Kingdom, United Kingdom, Australia, United Kingdom, United Kingdom, Brazil, France, United KingdomPublisher:Wiley Publicly fundedFunded by:UKRI | Global modelling of local..., FCT | LA 1, UKRI | RootDetect: Remote Detect... +1 projectsUKRI| Global modelling of local biodiversity responses to human impacts ,FCT| LA 1 ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,UKRI| Doctoral Training GrantLionel Hernández; Jodi L. Sedlock; Matthew J. Struebig; Vânia Proença; Eike Lena Neuschulz; Åke Berg; Martin Jung; Carolina L. Morales; Biagio D'Aniello; Kristoffer Hylander; Tom M. Fayle; Tom M. Fayle; Tom M. Fayle; Masahiro Ishitani; Carolina A. Robles; Vassiliki Kati; Virginia Aguilar-Barquero; Pedro Beja; Norbertas Noreika; Alexis Cerezo; Juan Paritsis; Szabolcs Sáfián; Nina Farwig; Steven J. Presley; Jörg Brunet; Oliver Schweiger; Thibault Lachat; T. Keith Philips; Igor Lysenko; Nick A. Littlewood; Stephen J. Rossiter; William Oduro; Kiril Vassilev; Michelle L K Harrison; Robert M. Ewers; Loreta Rosselli; Ulrika Samnegård; Felix Herzog; Alvin J. Helden; James I. Watling; Niall O'Dea; Olivia Norfolk; Víctor H. Luja; Carlos A. Peres; Eliana Martínez; Michael R. Willig; Jimmy Cabra-García; Douglas Sheil; Douglas Sheil; J. Leighton Reid; Tim Diekötter; Tim Diekötter; Nicolás Pelegrin; Antonio Felicioli; Lauchlan H. Fraser; Hollie Booth; Hollie Booth; Gilbert B. Adum; Grzegorz Mikusiński; Victoria Lantschner; Paola J. Isaacs-Cubides; Nor Rasidah Hashim; Annika M. Felton; Lawrence N. Hudson; Tibor Magura; Susan G. Letcher; Akihiro Nakamura; Anelena L Carvalho; Birgit Jauker; Béla Tóthmérész; Neil Aldrin D. Mallari; Neil Aldrin D. Mallari; Marco Silva Gottschalk; Eleanor M. Slade; Andrey S. Zaitsev; Shoji Naoe; Carsten F. Dormann; Mats Jonsell; Diego Higuera-Diaz; Lars Edenius; Péter Batáry; Violette Le Féon; Ben Darvill; Alain Dejean; Alain Dejean; Erin M. Bayne; Carlos H. Vergara; Luz Piedad Romero-Duque; Mick E. Hanley; Christopher D. Williams; Christian Hébert; Isabel Brito; Rolando Cerda; Yana T. Reis; Gretchen LeBuhn; Erika Buscardo; Erika Buscardo; Bertrand Dumont; James R. Miller; Jenni G. Garden; Lucinda Kirkpatrick; Allan H. Smith-Pardo; Allan H. Smith-Pardo; Dario Furlani; John-André Henden; Jochen H. Bihn; Yik Hei Sung; James Grogan; Manuel Esteban Lucas-Borja; John C. Z. Woinarski; Ádám Kőrösi; Ádám Kőrösi; Kaoru Maeto; Gábor L. Lövei; Stefan Abrahamczyk; Paolo Giordani; Lander Baeten; Morgan Garon; Argyrios Choimes; Argyrios Choimes; Danilo Bandini Ribeiro; Inge Armbrecht; Laurent Rousseau; Theodora Petanidou; Helena Castro; Mary N Muchane; Nicole M. Nöske; Nicholas J. Berry; Fernando A. B. Silva; Guiomar Nates-Parra; Pedro Giovâni da Silva; Muchai Muchane; Hannah J. White; Mats Dynesius; Bruno K. C. Filgueiras; Eric Katovai; Jörg U. Ganzhorn; Mounir Louhaichi; Christof Schüepp; Jort Verhulst; Stuart Connop; Matthieu Chauvat; Vena Kapoor; Katja Poveda; Marcelo A. Aizen; Eva Knop; Jörn P. W. Scharlemann; Jörn P. W. Scharlemann; Caragh G. Threlfall; Aaron D. Gove; Aaron D. Gove; Jonathan P. Sadler; Job Aben; Daniel F. R. Cleary; Erika Marin-Spiotta; Caleb Ofori-Boateng; Caleb Ofori-Boateng; Victoria Kemp; Dario A Navarrete Gutierrez; Francis Q. Brearley; Yanping Wang; David L P Correia; Jean-Philippe Légaré; Marino Quaranta; Gentile Francesco Ficetola; Adam J. Vanbergen; Zoltán Elek; Sydney A. Cameron; Jane C. Stout; Chris O. Oke; Ben Collen; Jorge Ari Noriega; Jörg Römbke; Ramón A. Sosa; Simon G. Dures; Simon G. Dures; Alejandro A. Castro-Luna; Joseph E. Hawes; Joseph E. Hawes; Adriana De Palma; Adriana De Palma; Steven J. Fonte; Hans Verboven; Marc Ancrenaz; Andy Purvis; Andy Purvis; Helen Phillips; Helen Phillips; Barbara A. Richardson; Daisuke Fukuda; Carlos A. López-Quintero; Yuan Pan; Badrul Azhar; Katrin Böhning-Gaese; Alejandro Parra-H; Alejandro Parra-H; Ben Phalan; Rebecca A. Senior; Navjot S. Sodhi; Jos Barlow;doi: 10.17863/cam.36177
pmc: PMC4278822
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
CORE arrow_drop_down Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1002/ece3.1303Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/23623Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/68192Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/11343/263351Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYRepositório Institucional da Universidade de AveiroArticle . 2014Data sources: Repositório Institucional da Universidade de AveiroHochschulschriftenserver - Universität Frankfurt am MainArticle . 2017Data sources: Hochschulschriftenserver - Universität Frankfurt am MainMunin - Open Research ArchiveArticle . 2014 . Peer-reviewedData sources: Munin - Open Research ArchiveQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.36177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 87visibility views 87 download downloads 186 Powered bymore_vert CORE arrow_drop_down Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1002/ece3.1303Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/23623Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/68192Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/11343/263351Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYRepositório Institucional da Universidade de AveiroArticle . 2014Data sources: Repositório Institucional da Universidade de AveiroHochschulschriftenserver - Universität Frankfurt am MainArticle . 2017Data sources: Hochschulschriftenserver - Universität Frankfurt am MainMunin - Open Research ArchiveArticle . 2014 . Peer-reviewedData sources: Munin - Open Research ArchiveQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.36177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu