- home
- Search
- Energy Research
- Closed Access
- Open Source
- Embargo
- 15. Life on land
- IT
- EU
- Energy Research
- Closed Access
- Open Source
- Embargo
- 15. Life on land
- IT
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors:SCARPA, MASSIMILIANO;
MAZZALI, UGO;SCARPA, MASSIMILIANO
SCARPA, MASSIMILIANO in OpenAIREPERON, FABIO;
PERON, FABIO
PERON, FABIO in OpenAIREhandle: 11578/217904
Abstract In recent years living walls have increasingly spread, thus becoming a diffuse architectural envelope cladding technology. Consequently, a more precise understanding of their thermal behavior and impact on the building energy balance are needed. One of the most important effects provided by the use of living walls is the shading of the building envelope, with clear benefits during the cooling period. Furthermore, many features characterize the thermal behavior of living walls, namely plant species, leaf area index (LAI), evapotranspiration, emissivity and air cavity type. All these particular characteristics have been accounted in the mathematical model developed in the frame of the presented research, whose aim is to provide a tool for the prediction of the thermal behavior of living walls. Two kinds of living walls, one with grass and closed air cavity and the other one with vertical garden and open air cavity were considered. The results achieved by means of the developed model show a good agreement with the measurements also supported by model efficiency indexes such as Nash–Sutcliffe efficiency index (NSEC). Values of around 0.7 were obtained for the NSEC index for both the investigated living walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4Cpmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors:Martínez-Freiría, Fernando;
Argaz, Hamida;Martínez-Freiría, Fernando
Martínez-Freiría, Fernando in OpenAIREFahd, Soumía;
Fahd, Soumía
Fahd, Soumía in OpenAIREBrito, José C.;
Brito, José C.
Brito, José C. in OpenAIREpmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV The summer of 2003 was the warmest summer in Europe since the 16th century. Its consequences on the fauna of a transitional ecosystem were studied through biodiversity, functional and ecological indicators, from summer 2002 to winter 2005. The heatwave caused considerable changes in the benthic community structure and relative composition, persisting in 2005. Animal assemblages switched from mollusc- to annelida-dominated. Biodiversity and functional indicators captured changes in community structure and composition, proving to be powerful tools to detect responses related to global warming. Ecological indicators rendered a monotonic response oscillating between bad and poor ecological status across the study period. The resilience of mollusc biocoenosis resulted limited with respect to other taxa, posing concerns about their conservation if, as predicted, the frequency of summers as hot as that of 2003 will progressively increase to become the norm at the end of this century.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2011.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2011.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Fabio Massaro; Claudio Leto; Mario Licata;Luca Lazzeri;
+3 AuthorsLuca Lazzeri
Luca Lazzeri in OpenAIREFabio Massaro; Claudio Leto; Mario Licata;Luca Lazzeri;
Luca Lazzeri
Luca Lazzeri in OpenAIRERoberto Matteo;
Teresa Tuttolomondo; S. La Bella;Roberto Matteo
Roberto Matteo in OpenAIREAbstract Potential energy feedstocks from conventional agriculture usually include pure vegetable oil (PVO) and agricultural/forest residues. Their uses can represent a starting point for the development of short agro-energy chains in the south areas of the Mediterranean region. This paper focused on testing and awareness raising of biofuel production for the cogeneration of electricity and heat from PVO of two Brassica oilseed crops in Sicily (Italy). The main aims of this study were: i) to evaluate the agronomic performance of rapeseed (Brassica napus L. var. oleifera D.C.) and Ethiopian mustard (Brassica carinata A. Braun) in semi-arid climate condition; ii) to analyze the quality of PVO and the chemical-physical characteristics of pure vegetable oils, defatted seed meals and crop residues of the two species; iii) to define the economic viability of a pilot combined heat and power (CHP) plant operating on PVO. In this study, seed and crop residue yields were determined at the harvesting stage on a harvest area of 10 m2. For each species, chemical-physical characterizations were carried out using specific protocols. The cogeneration of heat and electricity was carried out using a CHP system with a nominal power of 75 kWh. The final stage of the study focused on the economic viability analysis of the CHP system. Seed yields of rapeseed and Ethiopian mustard were 2.10 and 1.16 t ha−1 on average, respectively. Ethiopian mustard obtained the highest performance of aboveground biomass yield (5.31 t ha−1). The fatty acid profiles of the PVO resulted different for the two oilseed crops. Ethiopian mustard had, on average, the highest glucosinolate content in the seeds. The cogenerator showed a consumption of 14.4 kg PVO h−1 on average. Cash-flow trend analysis showed good economic benefit for farmers. These results make the two species as promising energy crops for suitable short agro-energy chains in the south Mediterranean areas.
Industrial Crops and... arrow_drop_down Industrial Crops and ProductsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indcrop.2018.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Industrial Crops and... arrow_drop_down Industrial Crops and ProductsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indcrop.2018.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:Wiley Funded by:EC | IANEXEC| IANEXAuthors:Cristina Madrid-López;
Cristina Madrid-López
Cristina Madrid-López in OpenAIREMario Giampietro;
Mario Giampietro
Mario Giampietro in OpenAIREdoi: 10.1111/jiec.12340
SummaryWater accounting is an unresolved issue in metabolism studies. Through epistemological analysis, we show that the problem resides in the conceptualization of social metabolism. Social metabolism has its origins in the analysis of societal energetics, which has led to an exclusive focus on society and a representation based on linear throughputs at a single scale. Whereas fossil energy resources constitute a mere stock flow for society, water constitutes a set of both funds and flows essential for the maintenance of the internal organization and stability of society and ecosystems. This means that societies and ecosystems need water for different reasons. Consequently, the analysis of water requires the simultaneous adoption of multiple narratives and scales. The development of hydrology toward a socio‐eco‐hydrology (SE‐hydrology) deals with this multidimensionality, but lacks a conceptualization of the coupled human‐water system useful to integrate the assessment of water processes at different rates and scales. We propose a conceptual framework, based on the multiscale integrated analysis of societal and ecosystem metabolism approach, that combines the perspectives of SE‐hydrology and social metabolism. This framework describes society and the embedding ecosystem as two distinct levels of the same hierarchical system (i.e., the socioecological system), expressing two distinct, but tightly interconnected, metabolic patterns (societal and ecosystem) at different spatiotemporal scales. Using food grain production in Punjab as an example, we show that this framework can accommodate the multiple interpretations of social metabolism found in different scientific fields.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/jiec...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/jiec...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: A. Fusi;J. Bacenetti;
J. Bacenetti
J. Bacenetti in OpenAIRES. González García;
A. Vercesi; +2 AuthorsS. González García
S. González García in OpenAIREA. Fusi;J. Bacenetti;
J. Bacenetti
J. Bacenetti in OpenAIRES. González García;
A. Vercesi; S. Bocchi;S. González García
S. González García in OpenAIREM. Fiala;
M. Fiala
M. Fiala in OpenAIREItaly is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from fertilizers (leaching, volatilization) as well as methane emissions should be implemented.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Portugal, AustraliaPublisher:Wiley Funded by:EC | BIOTIMEEC| BIOTIMEAuthors:Dornelas, Maria;
Phillip, Dawn A.T.;Dornelas, Maria
Dornelas, Maria in OpenAIREMagurran, Anne E.;
Magurran, Anne E.
Magurran, Anne E. in OpenAIREhandle: 10773/24738
Aim: To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location: Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north-east Venezuela. Methods: We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results: All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions: Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:IOP Publishing C Doering;
F Carini; M Sato; BJ Howard; AR Harbottle;C Doering
C Doering in OpenAIREJ Brown;
J Twining; H Velasco;pmid: 35506679
Abstract Under the International Atomic Energy Agency (IAEA) Modelling and Data for Radiological Impact Assessments (MODARIA II) Programme, Working Group 4 activities included collating radionuclide transfer data from Japan following the Fukushima Daiichi Nuclear Power Plant accident and separately collating concentration ratio (CR) data for root uptake of radionuclides by crops grown in tropical and arid climates. In this paper, the newly compiled radiocaesium CR data for fruit from Japan, tropical and arid climates have been combined with the data originally compiled for the IAEA Technical Reports Series No. 472 (TRS 472) and additional data identified from the literature to produce an enhanced MODARIA II dataset of fruit radiocaesium CR values. Statistical analysis of the MODARIA II dataset by climate class (based on the Köppen–Geiger climate classification) indicated that the CR values for tropical climates were significantly higher (p < 0.05) than those for arid, temperate and cold climates. Statistical analysis of the MODARIA II dataset by soil group (based on soil texture) indicated that the CR values for coral sand soil (tropical climates only) and organic soil (temperate climates only) were significantly higher (p < 0.05) than those for the clay, loam and sand soil groups. Statistical analysis of the MODARIA II dataset by plant group (based on plant morphology) indicated that the CR values for non-woody trees (tropical climate bias) were significantly higher (p < 0.05) than those for herbaceous plants, shrubs and woody trees. Comparison of the MODARIA II dataset with original TRS 472 values showed only small changes in the fruit radiocaesium CR values for herbaceous plants and shrubs in temperate climates. There was a decrease in the CR values for woody trees in temperate climate across all soil groups. There was also a decrease in the CR values for tropical climates for all comparable soil groups.
Journal of Radiologi... arrow_drop_down Journal of Radiological ProtectionArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6498/ac6046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Radiologi... arrow_drop_down Journal of Radiological ProtectionArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6498/ac6046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu