search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
107 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 15. Life on land
  • 2. Zero hunger
  • EU
  • CH
  • PL

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rischer, Heiko; Eriksen, Niels T.; Wiebe; Marilyn; +1 Authors

    The oleaginous alga Chlorella protothecoides accumulates lipid in its biomass when grown in nitrogen-restricted conditions. To assess the relationship between nitrogen provision and lipid accumulation and to determine the contribution of photosynthesis in mixotrophic growth, C. protothecoides was grown in mixo- and heterotrophic nitrogen-limited continuous flow cultures. Lipid content increased with decreasing C/N, while biomass yield on glucose was not affected. Continuous production of high lipid levels (57% of biomass) was possible at high C/N (87-94). However, the lipid production rate (2.48 g L(-1) d(-1)) was higher at D=0.84 d(-1) with C/N 37 than at D=0.44 d(-1) and C/N 87 even though the lipid content of the biomass was lower (38%). Photosynthesis contributed to biomass and lipid production in mixotrophic conditions, resulting in 13-38% reduction in CO2 production compared with heterotrophic cultures, demonstrating that photo- and heterotrophic growth occurred simultaneously in the same population.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2013
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2013
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2013
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2013
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kyriazi, Zacharoula; Maes, Frank; Degraer, Steven;

    Abstract The question whether coexistence of marine renewable energy (MRE) projects and marine protected areas (MPAs) is a common spatial policy in Europe and how a number of factors can affect it, has been addressed by empirical research undertaken in eleven European marine areas. Policy drivers and objectives that are assumed to affect coexistence, such as the fulfillment of conservation objectives and the prioritization of other competing marine uses, were scored by experts and predictions were crosschecked with state practice. While in most areas MRE-MPA coexistence is not prohibited by law, practice indicates resistance towards it. Furthermore expert judgment demonstrated that a number of additional factors, such as the lack of suitable space for MRE projects and the uncertainty about the extent of damage by MRE to the MPA, might influence the intentions of the two major parties involved (i.e. the MRE developer and the MPA authority) to pursue or avoid coexistence. Based on these findings, the interactions of these two players are further interpreted, their policy implications are discussed, while the need towards efficient, fair and acceptable MRE-MPA coexistence is highlighted.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ghent University Aca...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ghent University Aca...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Celeste López Abbate; Juan Carlos Molinero; Valeria A. Guinder; Gerardo M.E. Perillo; +4 Authors

    Estuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Diego Abalos; Jan Willem van Groenigen; Gerlinde B. De Deyn;

    AbstractPlant species exert a dominant control over the nitrogen (N) cycle of natural and managed grasslands. Although in intensively managed systems that receive large external N inputs the emission of the potent greenhouse gas nitrous oxide (N2O) is a crucial component of this cycle, a mechanistic relationship between plant species and N2O emissions has not yet been established. Here we use a plant functional trait approach to study the relation between plant species strategies and N2O emissions from soils. Compared to species with conservative strategies, species with acquisitive strategies have higher N uptake when there is ample N in the soil, but also trigger N mineralization when soil N is limiting. Therefore, we hypothesized that (1) compared to conservative species, species with acquisitive traits reduce N2O emissions after a high N addition; and (2) species with conservative traits have lower N2O emissions than acquisitive plants if there is no high N addition. This was tested in a greenhouse experiment using monocultures of six grass species with differing above‐ and below‐ground traits, growing across a gradient of soil N availability. We found that acquisitive species reduced N2O emissions at all levels of N availability, produced higher biomass and showed larger N uptake. As such, acquisitive species had 87% lower N2O emissions per unit of N uptake than conservative species (p < .05). Structural equation modelling revealed that specific leaf area and root length density were key traits regulating the effects of plants on N2O emission and biomass productivity. These results provide the first framework to understand the mechanisms through which plants modulate N2O emissions, pointing the way to develop productive grasslands that contribute optimally to climate change mitigation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Global Change Biology
    Article . 2018 . Peer-reviewed
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Global Change Biology
      Article . 2018 . Peer-reviewed
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gaudard, Ludovic; Romerio-Giudici, Franco; Dalla Valle, Francesco; Gorret, Roberta; +4 Authors

    This paper provides a synthesis and comparison of methodologies and results obtained in several studies devoted to the impact of climate change on hydropower. By putting into perspective various case studies, we provide a broader context and improved understanding of climate changes on energy production. We also underline the strengths and weaknesses of the approaches used as far as technical, physical and economical aspects are concerned. Although the catchments under investigation are located close to each other in geographic terms (Swiss and Italian Alps), they represent a wide variety of situations which may be affected by differing evolutions for instance in terms of annual runoff. In this study, we also differentiate between run-of-river, storage and pumping-storage power plants. By integrating and comparing various analyses carried out in the framework of the EU-FP7 ACQWA project, this paper discusses the complexity as well as current and future issues of hydropower management in the entire Alpine region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Access Routes
    Green
    bronze
    99
    citations99
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muller, Damien;

    This thesis presents a methodology for energy management in large companies and its implementation through a web application and through a prototype of a simulation platform. By combining existing tools in an innovative manner and by making use of recent web technology developments, the methodology adopted provides engineers and managers with tools capable of guaranteeing an efficient and sustainable energy management. Although the methodology presented in this work is based on the experience acquired in the food industry, it can be easily applied in other industrial sectors. The methodology is based on two fundamental approaches commonly used to analyse energy consumption in industrial contexts: the top-down approach and the bottom-up approach. The top-down approach is used in the first place to identify the factories and the specific areas within the factories in which the largest improvement potentials can be achieved. In turn, the bottom-up approach builds on the results from the top-down approach to identify and quantify the energy saving potentials. The top-down approach is implemented through a web application in collaboration with an industrial partner. This application encompasses a modular factory model –accessible to engineers in factories through a user-friendly interface– which enables each factory to define its energy usage, allocate energy costs among the different energy consumers and compute key performance indicators. For a rational cost allocation in multi-service energy conversion units, an exergy-based methodology is presented. The efficiency of energy conversion units defined in the factory model, such as the boilerhouse or the air heaters, is assessed using thermodynamic models. The latter are simplified parametric models derived from accurate thermodynamic models developed in a general flow-sheeting and simulation software to comply with computation time and reliability requirements of the web application. The different factory models defined in the web application can be browsed as part of the proposed top-down approach: starting from a high level overview of the factory –targeted mainly at managers– users can then focus on a specific area of the factory. Strategies are developed to guide users in identifying factories or specific areas within the factories with the largest improvement potentials. They include the use of mechanism to rate the quality of a performance indicator as well as a benchmarking module that allows to compare performance indicators across factories worldwide. In sum, the modular and adaptive aspects of the web application guarantee its long-lasting use. In order to quantify energy saving potentials in the energy conversion units defined in a factory model, "what if?" scenarios are performed in a web-based simulation platform prototype developed in this thesis. This platform acts as a decision-support tool by providing graphical representations of profitability and risk analysis. The platform can be accessed by human users through a web browser while other applications, such as the web application described above, may use the simulation functions through a web service. Statistical tools that can help engineers in defining the factory model described above are also presented. They are used to correlate energy consumption with factors such as production volumes or the climate. Tests to validate the developed correlations are also described. The application of this technique in a factory shows that more than 50% of the energy consumption does not have a direct correlation with production factors and allows to identify improvement potentials. Finally, the concept of a bottom-up approach to identify and quantify energy saving potentials in the different production processes of a factory is presented. A triple representation of the requirements of a process is introduced and applied to process integration in a concrete example. The 80/20 rule is also applied to reduce the complexity of the problem. The optimal integration of cogeneration engines and heat pumps using multi-objective optimisation is also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2007
    Data sources: Datacite
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hugo Streekstra; Henk A. Schols; Harry Gruppen; Klaus G. Neumüller;

    Corn silage, its water unextractable solids (WUS) and enzyme recalcitrant solids (ErCS) and an industrial corn silage-based anaerobic fermentation residue (AFR) represent corn substrates with different levels of recalcitrance. Compositional analysis reveals different levels of arabinoxylan substitution for WUS, ErCS and AFR, being most pronounced regarding acetic acid, glucuronic acid- and arabinose content. By screening for enzymatic degradation of WUS, ErCS and AFR, enzyme preparations exhibiting high conversion rates were identified. Furthermore significant synergistic effects were detected by blending Aspergillus niger/Talaromyces emersonii culture filtrates with various enzymes. These findings clearly highlight a necessity for a combinatorial use of enzyme preparations towards substrates with high recalcitrance characteristics to reach high degrees of degradation. Enzyme blends were identified, outperforming the individual commercial preparations. These enzyme preparations provide a basis for new, designed enzyme mixtures for corn polysaccharide degradation as a source of necessary, accessory enzyme activities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alvar Braathen; Alvar Braathen; Leif Larsen; Snorre Olaussen; +4 Authors

    Storage capacity is a key aspect when validating potential CO2 sequestration sites. Most CO2 storage projects, for obvious reasons, target conventional aquifers (e.g., saline aquifers, depleted hydrocarbon fields) with good reservoir properties and ample subsurface data. However, non-geological factors, such as proximity to the CO2 source, may require storing CO2 in geologically “less-than-ideal” sites. We here present a first-order CO2 storage resource estimate of such an unconventional storage unit, a naturally fractured, compartmentalized and underpressured siliciclastic aquifer located at 670–1,000 m below Longyearbyen, Arctic Norway. Water injection tests confirm the injectivity of the reservoir. Capacity calculations, based on the US DOE guidelines for CO2 storage resource estimation, were implemented in a stochastic volumetric workflow. All available data were used to specify input parameters and their probability distributions. The areal extent of the compartmentalized reservoir is poorly constrained, encouraging a scenario-based approach. Other high-impact parameters influencing storage resource estimates include CO2 saturation, CO2 density and the storage efficiency factor. The hydrodynamic effects of storing CO2 in a compartmentalized aquifer are accounted for by calculating probable storage efficiency factors (0.04–0.79 %) in a fully closed system. The results are ultimately linked to the chosen scenario, with two orders of magnitude difference between scenarios. The fracture network contributes with up to 2 % to the final volumes. The derived workflow validates CO2 storage sites based on initial feasibility assessments, and may be applied to aid decision making at other unconventional CO2 storage sites with significant data uncertainty.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Earth Sciences
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Earth Sciences
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gatti, L.V.; Gloor, M.; Miller, J.B.; Doughty, C.E.; +13 Authors

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014
    Access Routes
    Green
    bronze
    397
    citations397
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
107 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rischer, Heiko; Eriksen, Niels T.; Wiebe; Marilyn; +1 Authors

    The oleaginous alga Chlorella protothecoides accumulates lipid in its biomass when grown in nitrogen-restricted conditions. To assess the relationship between nitrogen provision and lipid accumulation and to determine the contribution of photosynthesis in mixotrophic growth, C. protothecoides was grown in mixo- and heterotrophic nitrogen-limited continuous flow cultures. Lipid content increased with decreasing C/N, while biomass yield on glucose was not affected. Continuous production of high lipid levels (57% of biomass) was possible at high C/N (87-94). However, the lipid production rate (2.48 g L(-1) d(-1)) was higher at D=0.84 d(-1) with C/N 37 than at D=0.44 d(-1) and C/N 87 even though the lipid content of the biomass was lower (38%). Photosynthesis contributed to biomass and lipid production in mixotrophic conditions, resulting in 13-38% reduction in CO2 production compared with heterotrophic cultures, demonstrating that photo- and heterotrophic growth occurred simultaneously in the same population.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2013
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2013
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2013
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2013
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kyriazi, Zacharoula; Maes, Frank; Degraer, Steven;

    Abstract The question whether coexistence of marine renewable energy (MRE) projects and marine protected areas (MPAs) is a common spatial policy in Europe and how a number of factors can affect it, has been addressed by empirical research undertaken in eleven European marine areas. Policy drivers and objectives that are assumed to affect coexistence, such as the fulfillment of conservation objectives and the prioritization of other competing marine uses, were scored by experts and predictions were crosschecked with state practice. While in most areas MRE-MPA coexistence is not prohibited by law, practice indicates resistance towards it. Furthermore expert judgment demonstrated that a number of additional factors, such as the lack of suitable space for MRE projects and the uncertainty about the extent of damage by MRE to the MPA, might influence the intentions of the two major parties involved (i.e. the MRE developer and the MPA authority) to pursue or avoid coexistence. Based on these findings, the interactions of these two players are further interpreted, their policy implications are discussed, while the need towards efficient, fair and acceptable MRE-MPA coexistence is highlighted.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ghent University Aca...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ghent University Aca...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Celeste López Abbate; Juan Carlos Molinero; Valeria A. Guinder; Gerardo M.E. Perillo; +4 Authors

    Estuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Diego Abalos; Jan Willem van Groenigen; Gerlinde B. De Deyn;

    AbstractPlant species exert a dominant control over the nitrogen (N) cycle of natural and managed grasslands. Although in intensively managed systems that receive large external N inputs the emission of the potent greenhouse gas nitrous oxide (N2O) is a crucial component of this cycle, a mechanistic relationship between plant species and N2O emissions has not yet been established. Here we use a plant functional trait approach to study the relation between plant species strategies and N2O emissions from soils. Compared to species with conservative strategies, species with acquisitive strategies have higher N uptake when there is ample N in the soil, but also trigger N mineralization when soil N is limiting. Therefore, we hypothesized that (1) compared to conservative species, species with acquisitive traits reduce N2O emissions after a high N addition; and (2) species with conservative traits have lower N2O emissions than acquisitive plants if there is no high N addition. This was tested in a greenhouse experiment using monocultures of six grass species with differing above‐ and below‐ground traits, growing across a gradient of soil N availability. We found that acquisitive species reduced N2O emissions at all levels of N availability, produced higher biomass and showed larger N uptake. As such, acquisitive species had 87% lower N2O emissions per unit of N uptake than conservative species (p < .05). Structural equation modelling revealed that specific leaf area and root length density were key traits regulating the effects of plants on N2O emission and biomass productivity. These results provide the first framework to understand the mechanisms through which plants modulate N2O emissions, pointing the way to develop productive grasslands that contribute optimally to climate change mitigation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Global Change Biology
    Article . 2018 . Peer-reviewed
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Global Change Biology
      Article . 2018 . Peer-reviewed
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gaudard, Ludovic; Romerio-Giudici, Franco; Dalla Valle, Francesco; Gorret, Roberta; +4 Authors

    This paper provides a synthesis and comparison of methodologies and results obtained in several studies devoted to the impact of climate change on hydropower. By putting into perspective various case studies, we provide a broader context and improved understanding of climate changes on energy production. We also underline the strengths and weaknesses of the approaches used as far as technical, physical and economical aspects are concerned. Although the catchments under investigation are located close to each other in geographic terms (Swiss and Italian Alps), they represent a wide variety of situations which may be affected by differing evolutions for instance in terms of annual runoff. In this study, we also differentiate between run-of-river, storage and pumping-storage power plants. By integrating and comparing various analyses carried out in the framework of the EU-FP7 ACQWA project, this paper discusses the complexity as well as current and future issues of hydropower management in the entire Alpine region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Access Routes
    Green
    bronze
    99
    citations99
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muller, Damien;

    This thesis presents a methodology for energy management in large companies and its implementation through a web application and through a prototype of a simulation platform. By combining existing tools in an innovative manner and by making use of recent web technology developments, the methodology adopted provides engineers and managers with tools capable of guaranteeing an efficient and sustainable energy management. Although the methodology presented in this work is based on the experience acquired in the food industry, it can be easily applied in other industrial sectors. The methodology is based on two fundamental approaches commonly used to analyse energy consumption in industrial contexts: the top-down approach and the bottom-up approach. The top-down approach is used in the first place to identify the factories and the specific areas within the factories in which the largest improvement potentials can be achieved. In turn, the bottom-up approach builds on the results from the top-down approach to identify and quantify the energy saving potentials. The top-down approach is implemented through a web application in collaboration with an industrial partner. This application encompasses a modular factory model –accessible to engineers in factories through a user-friendly interface– which enables each factory to define its energy usage, allocate energy costs among the different energy consumers and compute key performance indicators. For a rational cost allocation in multi-service energy conversion units, an exergy-based methodology is presented. The efficiency of energy conversion units defined in the factory model, such as the boilerhouse or the air heaters, is assessed using thermodynamic models. The latter are simplified parametric models derived from accurate thermodynamic models developed in a general flow-sheeting and simulation software to comply with computation time and reliability requirements of the web application. The different factory models defined in the web application can be browsed as part of the proposed top-down approach: starting from a high level overview of the factory –targeted mainly at managers– users can then focus on a specific area of the factory. Strategies are developed to guide users in identifying factories or specific areas within the factories with the largest improvement potentials. They include the use of mechanism to rate the quality of a performance indicator as well as a benchmarking module that allows to compare performance indicators across factories worldwide. In sum, the modular and adaptive aspects of the web application guarantee its long-lasting use. In order to quantify energy saving potentials in the energy conversion units defined in a factory model, "what if?" scenarios are performed in a web-based simulation platform prototype developed in this thesis. This platform acts as a decision-support tool by providing graphical representations of profitability and risk analysis. The platform can be accessed by human users through a web browser while other applications, such as the web application described above, may use the simulation functions through a web service. Statistical tools that can help engineers in defining the factory model described above are also presented. They are used to correlate energy consumption with factors such as production volumes or the climate. Tests to validate the developed correlations are also described. The application of this technique in a factory shows that more than 50% of the energy consumption does not have a direct correlation with production factors and allows to identify improvement potentials. Finally, the concept of a bottom-up approach to identify and quantify energy saving potentials in the different production processes of a factory is presented. A triple representation of the requirements of a process is introduced and applied to process integration in a concrete example. The 80/20 rule is also applied to reduce the complexity of the problem. The optimal integration of cogeneration engines and heat pumps using multi-objective optimisation is also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2007
    Data sources: Datacite
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hugo Streekstra; Henk A. Schols; Harry Gruppen; Klaus G. Neumüller;

    Corn silage, its water unextractable solids (WUS) and enzyme recalcitrant solids (ErCS) and an industrial corn silage-based anaerobic fermentation residue (AFR) represent corn substrates with different levels of recalcitrance. Compositional analysis reveals different levels of arabinoxylan substitution for WUS, ErCS and AFR, being most pronounced regarding acetic acid, glucuronic acid- and arabinose content. By screening for enzymatic degradation of WUS, ErCS and AFR, enzyme preparations exhibiting high conversion rates were identified. Furthermore significant synergistic effects were detected by blending Aspergillus niger/Talaromyces emersonii culture filtrates with various enzymes. These findings clearly highlight a necessity for a combinatorial use of enzyme preparations towards substrates with high recalcitrance characteristics to reach high degrees of degradation. Enzyme blends were identified, outperforming the individual commercial preparations. These enzyme preparations provide a basis for new, designed enzyme mixtures for corn polysaccharide degradation as a source of necessary, accessory enzyme activities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alvar Braathen; Alvar Braathen; Leif Larsen; Snorre Olaussen; +4 Authors

    Storage capacity is a key aspect when validating potential CO2 sequestration sites. Most CO2 storage projects, for obvious reasons, target conventional aquifers (e.g., saline aquifers, depleted hydrocarbon fields) with good reservoir properties and ample subsurface data. However, non-geological factors, such as proximity to the CO2 source, may require storing CO2 in geologically “less-than-ideal” sites. We here present a first-order CO2 storage resource estimate of such an unconventional storage unit, a naturally fractured, compartmentalized and underpressured siliciclastic aquifer located at 670–1,000 m below Longyearbyen, Arctic Norway. Water injection tests confirm the injectivity of the reservoir. Capacity calculations, based on the US DOE guidelines for CO2 storage resource estimation, were implemented in a stochastic volumetric workflow. All available data were used to specify input parameters and their probability distributions. The areal extent of the compartmentalized reservoir is poorly constrained, encouraging a scenario-based approach. Other high-impact parameters influencing storage resource estimates include CO2 saturation, CO2 density and the storage efficiency factor. The hydrodynamic effects of storing CO2 in a compartmentalized aquifer are accounted for by calculating probable storage efficiency factors (0.04–0.79 %) in a fully closed system. The results are ultimately linked to the chosen scenario, with two orders of magnitude difference between scenarios. The fracture network contributes with up to 2 % to the final volumes. The derived workflow validates CO2 storage sites based on initial feasibility assessments, and may be applied to aid decision making at other unconventional CO2 storage sites with significant data uncertainty.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Earth Sciences
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Earth Sciences
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gatti, L.V.; Gloor, M.; Miller, J.B.; Doughty, C.E.; +13 Authors

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2014
    Access Routes
    Green
    bronze
    397
    citations397
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2014