- home
- Search
- Energy Research
- 11. Sustainability
- 3. Good health
- 1. No poverty
- EU
- Spanish National Research Council
- Energy Research
- 11. Sustainability
- 3. Good health
- 1. No poverty
- EU
- Spanish National Research Council
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SAPUSSEC| SAPUSSAndrés Alastuey; Xavier Querol; Mariola Brines; Mariola Brines; Fulvio Amato; Barend L. van Drooge; María Cruz Minguillón; Angeliki Karanasiou; Manuel Dall'Osto; Joan O. Grimalt;Source apportionment of atmospheric PM1 is important for air quality control, especially in urban areas where high mass concentrations are often observed. Chemical analysis of molecular inorganic and organic tracer compounds and subsequently data analysis with receptor models give insight on the origin of the PM1 sources. In the present study, four source apportionment approaches were compared with an extended database containing inorganic and organic compounds that were measured during an intensive sampling campaign at urban traffic and urban background sites in Barcelona. Source apportionment of the combined database, containing both inorganic and organic compounds, was compared with more conventional approaches using inorganic and organic databases separately. Traffic emission sources were identified in all models for the two sites. The combined inorganic and organic databases provided higher discrimination capacity of emission sources. It identified aerosols generated by regional recirculation of biomass burning, secondary biogenic organic aerosols, harbor emissions, and specific industrial emissions. In this respect, this approach identified a relevant industrial source situated at NE Barcelona in which a waste incinerator plant, a combined-cycle power plant, and an industrial glass complex are located. Models using both inorganic and organic molecular tracer compounds improve the source apportionment of urban PM.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedData sources: Digital.CSICadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06199-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedData sources: Digital.CSICadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06199-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMES. Herrera; J. Bedia; J. Gutiérrez; J. Fernández; J. Moreno;handle: 10261/93830
Fire danger indices are descriptors of fire potential in a large area, and combine a few variables that affect the initiation, spread and control of forest fires. The Canadian Fire Weather Index (FWI) is one of the most widely used fire danger indices in the world, and it is built upon instantaneous values of temperature, relative humidity and wind velocity at noon, together with 24 hourly accumulated precipitation. However, the scarcity of appropriate data has motivated the use of daily mean values as surrogates of the instantaneous ones in several studies that aimed to assess the impact of global warming on fire. In this paper we test the sensitivity of FWI values to both instantaneous and daily mean values, analyzing their effect on mean seasonal fire danger (seasonal severity rating, SSR) and extreme fire danger conditions (90th percentile, FWI90, and FWI>30, FOT30), with a special focus on its influence in climate change impact studies. To this aim, we analyzed reanalysis and regional climate model (RCM) simulations, and compared the resulting instantaneous and daily mean versions both in the present climate and in a future scenario. In particular, we were interested in determining the effect of these datasets on the projected changes obtained for the mean and extreme seasonal fire danger conditions in future climate scenarios, as given by a RCM. Overall, our results warn against the use of daily mean data for the computation of present and future fire danger conditions. Daily mean data lead to systematic negative biases of fire danger calculations. Although the mean seasonal fire danger indices might be corrected to compensate for this bias, fire danger extremes (FWI90 and specially FOT30) cannot be reliably transformed to accommodate the spatial pattern and magnitude of their respective instantaneous versions, leading to inconsistent results when projected into the future. As a result, we advocate caution when using daily mean data and strongly recommend the application of the standard definition for its calculation as closely as possible. Threshold-dependent indices derived from FWI are not reliably represented by the daily mean version and thus can neither be applied for the estimation of future fire danger season length and severity, nor for the estimation of future extreme events. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). J.F. acknowledges nancial support from the Spanish R&D&I programme through grant CGL2010-22158-C02 (CORWES project). The ESCENA project (200800050084265) of the Spanish \Strategic action on energy and climate change" provided the WRF RCM simulation used in this study. We acknowledge three anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 370 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SyBil-AAEC| SyBil-AAAuthors: Laura Pérez-Cervera; Silvia De Santis; Encarni Marcos; Zahra Ghorbanzad-Ghaziany; +11 AuthorsLaura Pérez-Cervera; Silvia De Santis; Encarni Marcos; Zahra Ghorbanzad-Ghaziany; Alejandro Trouvé-Carpena; Mohamed Kotb Selim; Úrsula Pérez-Ramírez; Simone Pfarr; Patrick Bach; Patrick Halli; Falk Kiefer; David Moratal; Peter Kirsch; Wolfgang H. Sommer; Santiago Canals;Abstract Introduction Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology. Summary Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.
Acta Neuropathologic... arrow_drop_down Acta Neuropathologica CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40478-023-01597-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Acta Neuropathologic... arrow_drop_down Acta Neuropathologica CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40478-023-01597-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 02 Mar 2021 France, Germany, Switzerland, FrancePublisher:Copernicus GmbH Funded by:SNSF | Robust models for assessi..., EC | GHG EUROPE, SNSF | Buffer-Capacity-based Liv...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,EC| GHG EUROPE ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, KenyaL. Merbold; L. Merbold; L. Merbold; C. Decock; C. Decock; W. Eugster; K. Fuchs; B. Wolf; N. Buchmann; L. Hörtnagl;Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Informa UK Limited Funded by:EC | EVALUATEEC| EVALUATEAuthors: Victoria Pellicer-Sifres; Neil Simcock; Alejandra Boni;handle: 10261/264623
[EN] It is widely recognised that energy poverty can have serious and detrimental impacts upon multiple aspects of people's well-being and life quality. This paper seeks to provide a multi-dimensional and theoretically-attuned account of the relations between energy poverty and well-being, through the use of the Capabilities Approach and specifically Nussbaum's normative theory of Central Capabilities. Drawing on interviews with 109 households in 4 European countries, we demonstrate how 6 of the 10 Central Capabilities - namely Bodily Health, Emotions, Affiliation, Play, Practical Reason and Senses, Imagination & Thought - can be directly harmed by energy poverty. Our findings strengthen claims that energy poverty should be considered a serious form of (energy) injustice. We conclude by reflecting on the implications of our work for energy poverty research and policy, and the opportunities opened up by adopting the Capabilities Approach. Data collection in Budapest, Gdansk and Skopje received funding from the European Research Council under the European Union's Seventh Framework Programme [grant number FP7/2007-2013]/ERC grant agreement number 313478. We also acknowledge the COST Action "European Energy Poverty: Agenda Co-Creation and Knowledge Innovation" [ENGAGER 2017-2021, CA16232] supported by COST (European Cooperation in Science and Technology - www.cost.eu).This was supported by Ministerio de Ciencia, Innovacion y Universidades.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13549839.2021.1952968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 173 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13549839.2021.1952968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERTEC| BIODESERTAuthors: Emilio Guirado; Manuel Delgado-Baquerizo; Jaime Martínez-Valderrama; Siham Tabik; +2 AuthorsEmilio Guirado; Manuel Delgado-Baquerizo; Jaime Martínez-Valderrama; Siham Tabik; Domingo Alcaraz-Segura; Fernando T. Maestre;Knowing the extent and environmental drivers of forests is key to successfully restore degraded ecosystems, and to mitigate climate change and desertification impacts using tree planting. Water availability is the main limiting factor for the development of forests in drylands, yet the importance of groundwater resources and palaeoclimate as drivers of their current distribution has been neglected. Here we report that mid-Holocene climates and aquifer trends are key predictors of the distribution of dryland forests worldwide. We also updated the global extent of dryland forests to 1,283 million hectares and showed that failing to consider past climates and aquifers has resulted in ignoring or misplacing up to 130 million hectares of forests in drylands. Our findings highlight the importance of a wetter past and well-preserved aquifers to explain the current distribution of dryland forests, and can guide restoration actions by avoiding unsuitable areas for tree establishment in a drier world.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-022-01198-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 131 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-022-01198-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:The Electrochemical Society Funded by:EC | CAMBATEC| CAMBATAuthors: R. Dugas; A. Ponrouch;handle: 10261/282241
A simplified method is presented to extract the transport parameters of a liquid electrolyte solution from an experiment in a four-electrode cell. By observing that both polarisation and relaxation tend exponentially to a finite value with the same time constant, it becomes possible to precisely evaluate the limiting voltage attained upon polarisation though no steady state can be reached in practice, and use this input to evaluate the cation transference number as a function of the thermodynamic factor. This procedure simplifies the data analysis by avoiding complete fitting of the polarisation with a complicated numerical model. Such approach can favour the deployment of the four-electrode method to evaluate electrolyte transport parameters, which are crucial for the development of better performing batteries.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ac96ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ac96ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, SpainPublisher:Wiley Funded by:EC | LABOHREC| LABOHRStefano Passerini; Anders Ochel; Anders Ochel; Elie Paillard; Elie Paillard; Pablo Palomino; Pablo Palomino; Lorenzo Grande; Lorenzo Grande; Simone Monaco; Simone Monaco; Dino Tonti; Marina Mastragostino;handle: 10261/186191
AbstractDespite the considerable initial optimism behind its development and prospective commercialization, the Li/air battery chemistry has now reached a mature stage of development, which has served to highlight the main underlying technological limitations, as well as what can realistically be expected from it. One of the main challenges is the control of the discharge product morphology, that is, Li2O2, onto the positive electrode. In this article, we show how the three‐phase configuration required to ensure cell operation can be induced in a two‐phase system made of mesoporous carbon and an ionic liquid electrolyte [N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethane sulfonyl)imide, Pyr14TFSI] by means of an oxygen‐bubbling device (OBD) and a peristaltic pump. The use of a non‐flammable, non‐volatile electrolyte ensures long‐term, extensive discharging (up to 4.78 mAh cm−2), as well as operation at temperatures higher than room temperature.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201500247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 6 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201500247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SAPUSSEC| SAPUSSAndrés Alastuey; Xavier Querol; Mariola Brines; Mariola Brines; Fulvio Amato; Barend L. van Drooge; María Cruz Minguillón; Angeliki Karanasiou; Manuel Dall'Osto; Joan O. Grimalt;Source apportionment of atmospheric PM1 is important for air quality control, especially in urban areas where high mass concentrations are often observed. Chemical analysis of molecular inorganic and organic tracer compounds and subsequently data analysis with receptor models give insight on the origin of the PM1 sources. In the present study, four source apportionment approaches were compared with an extended database containing inorganic and organic compounds that were measured during an intensive sampling campaign at urban traffic and urban background sites in Barcelona. Source apportionment of the combined database, containing both inorganic and organic compounds, was compared with more conventional approaches using inorganic and organic databases separately. Traffic emission sources were identified in all models for the two sites. The combined inorganic and organic databases provided higher discrimination capacity of emission sources. It identified aerosols generated by regional recirculation of biomass burning, secondary biogenic organic aerosols, harbor emissions, and specific industrial emissions. In this respect, this approach identified a relevant industrial source situated at NE Barcelona in which a waste incinerator plant, a combined-cycle power plant, and an industrial glass complex are located. Models using both inorganic and organic molecular tracer compounds improve the source apportionment of urban PM.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedData sources: Digital.CSICadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06199-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedData sources: Digital.CSICadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06199-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMES. Herrera; J. Bedia; J. Gutiérrez; J. Fernández; J. Moreno;handle: 10261/93830
Fire danger indices are descriptors of fire potential in a large area, and combine a few variables that affect the initiation, spread and control of forest fires. The Canadian Fire Weather Index (FWI) is one of the most widely used fire danger indices in the world, and it is built upon instantaneous values of temperature, relative humidity and wind velocity at noon, together with 24 hourly accumulated precipitation. However, the scarcity of appropriate data has motivated the use of daily mean values as surrogates of the instantaneous ones in several studies that aimed to assess the impact of global warming on fire. In this paper we test the sensitivity of FWI values to both instantaneous and daily mean values, analyzing their effect on mean seasonal fire danger (seasonal severity rating, SSR) and extreme fire danger conditions (90th percentile, FWI90, and FWI>30, FOT30), with a special focus on its influence in climate change impact studies. To this aim, we analyzed reanalysis and regional climate model (RCM) simulations, and compared the resulting instantaneous and daily mean versions both in the present climate and in a future scenario. In particular, we were interested in determining the effect of these datasets on the projected changes obtained for the mean and extreme seasonal fire danger conditions in future climate scenarios, as given by a RCM. Overall, our results warn against the use of daily mean data for the computation of present and future fire danger conditions. Daily mean data lead to systematic negative biases of fire danger calculations. Although the mean seasonal fire danger indices might be corrected to compensate for this bias, fire danger extremes (FWI90 and specially FOT30) cannot be reliably transformed to accommodate the spatial pattern and magnitude of their respective instantaneous versions, leading to inconsistent results when projected into the future. As a result, we advocate caution when using daily mean data and strongly recommend the application of the standard definition for its calculation as closely as possible. Threshold-dependent indices derived from FWI are not reliably represented by the daily mean version and thus can neither be applied for the estimation of future fire danger season length and severity, nor for the estimation of future extreme events. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). J.F. acknowledges nancial support from the Spanish R&D&I programme through grant CGL2010-22158-C02 (CORWES project). The ESCENA project (200800050084265) of the Spanish \Strategic action on energy and climate change" provided the WRF RCM simulation used in this study. We acknowledge three anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 370 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SyBil-AAEC| SyBil-AAAuthors: Laura Pérez-Cervera; Silvia De Santis; Encarni Marcos; Zahra Ghorbanzad-Ghaziany; +11 AuthorsLaura Pérez-Cervera; Silvia De Santis; Encarni Marcos; Zahra Ghorbanzad-Ghaziany; Alejandro Trouvé-Carpena; Mohamed Kotb Selim; Úrsula Pérez-Ramírez; Simone Pfarr; Patrick Bach; Patrick Halli; Falk Kiefer; David Moratal; Peter Kirsch; Wolfgang H. Sommer; Santiago Canals;Abstract Introduction Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology. Summary Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.
Acta Neuropathologic... arrow_drop_down Acta Neuropathologica CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40478-023-01597-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Acta Neuropathologic... arrow_drop_down Acta Neuropathologica CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40478-023-01597-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 02 Mar 2021 France, Germany, Switzerland, FrancePublisher:Copernicus GmbH Funded by:SNSF | Robust models for assessi..., EC | GHG EUROPE, SNSF | Buffer-Capacity-based Liv...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,EC| GHG EUROPE ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, KenyaL. Merbold; L. Merbold; L. Merbold; C. Decock; C. Decock; W. Eugster; K. Fuchs; B. Wolf; N. Buchmann; L. Hörtnagl;Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Informa UK Limited Funded by:EC | EVALUATEEC| EVALUATEAuthors: Victoria Pellicer-Sifres; Neil Simcock; Alejandra Boni;handle: 10261/264623
[EN] It is widely recognised that energy poverty can have serious and detrimental impacts upon multiple aspects of people's well-being and life quality. This paper seeks to provide a multi-dimensional and theoretically-attuned account of the relations between energy poverty and well-being, through the use of the Capabilities Approach and specifically Nussbaum's normative theory of Central Capabilities. Drawing on interviews with 109 households in 4 European countries, we demonstrate how 6 of the 10 Central Capabilities - namely Bodily Health, Emotions, Affiliation, Play, Practical Reason and Senses, Imagination & Thought - can be directly harmed by energy poverty. Our findings strengthen claims that energy poverty should be considered a serious form of (energy) injustice. We conclude by reflecting on the implications of our work for energy poverty research and policy, and the opportunities opened up by adopting the Capabilities Approach. Data collection in Budapest, Gdansk and Skopje received funding from the European Research Council under the European Union's Seventh Framework Programme [grant number FP7/2007-2013]/ERC grant agreement number 313478. We also acknowledge the COST Action "European Energy Poverty: Agenda Co-Creation and Knowledge Innovation" [ENGAGER 2017-2021, CA16232] supported by COST (European Cooperation in Science and Technology - www.cost.eu).This was supported by Ministerio de Ciencia, Innovacion y Universidades.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13549839.2021.1952968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 173 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13549839.2021.1952968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERTEC| BIODESERTAuthors: Emilio Guirado; Manuel Delgado-Baquerizo; Jaime Martínez-Valderrama; Siham Tabik; +2 AuthorsEmilio Guirado; Manuel Delgado-Baquerizo; Jaime Martínez-Valderrama; Siham Tabik; Domingo Alcaraz-Segura; Fernando T. Maestre;Knowing the extent and environmental drivers of forests is key to successfully restore degraded ecosystems, and to mitigate climate change and desertification impacts using tree planting. Water availability is the main limiting factor for the development of forests in drylands, yet the importance of groundwater resources and palaeoclimate as drivers of their current distribution has been neglected. Here we report that mid-Holocene climates and aquifer trends are key predictors of the distribution of dryland forests worldwide. We also updated the global extent of dryland forests to 1,283 million hectares and showed that failing to consider past climates and aquifers has resulted in ignoring or misplacing up to 130 million hectares of forests in drylands. Our findings highlight the importance of a wetter past and well-preserved aquifers to explain the current distribution of dryland forests, and can guide restoration actions by avoiding unsuitable areas for tree establishment in a drier world.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-022-01198-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 131 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-022-01198-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:The Electrochemical Society Funded by:EC | CAMBATEC| CAMBATAuthors: R. Dugas; A. Ponrouch;handle: 10261/282241
A simplified method is presented to extract the transport parameters of a liquid electrolyte solution from an experiment in a four-electrode cell. By observing that both polarisation and relaxation tend exponentially to a finite value with the same time constant, it becomes possible to precisely evaluate the limiting voltage attained upon polarisation though no steady state can be reached in practice, and use this input to evaluate the cation transference number as a function of the thermodynamic factor. This procedure simplifies the data analysis by avoiding complete fitting of the polarisation with a complicated numerical model. Such approach can favour the deployment of the four-electrode method to evaluate electrolyte transport parameters, which are crucial for the development of better performing batteries.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ac96ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ac96ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, SpainPublisher:Wiley Funded by:EC | LABOHREC| LABOHRStefano Passerini; Anders Ochel; Anders Ochel; Elie Paillard; Elie Paillard; Pablo Palomino; Pablo Palomino; Lorenzo Grande; Lorenzo Grande; Simone Monaco; Simone Monaco; Dino Tonti; Marina Mastragostino;handle: 10261/186191
AbstractDespite the considerable initial optimism behind its development and prospective commercialization, the Li/air battery chemistry has now reached a mature stage of development, which has served to highlight the main underlying technological limitations, as well as what can realistically be expected from it. One of the main challenges is the control of the discharge product morphology, that is, Li2O2, onto the positive electrode. In this article, we show how the three‐phase configuration required to ensure cell operation can be induced in a two‐phase system made of mesoporous carbon and an ionic liquid electrolyte [N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethane sulfonyl)imide, Pyr14TFSI] by means of an oxygen‐bubbling device (OBD) and a peristaltic pump. The use of a non‐flammable, non‐volatile electrolyte ensures long‐term, extensive discharging (up to 4.78 mAh cm−2), as well as operation at temperatures higher than room temperature.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201500247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 6 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201500247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu