- home
- Search
- Energy Research
- 2. Zero hunger
- 15. Life on land
- EU
- Energies
- Energy Research
- 2. Zero hunger
- 15. Life on land
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | REWINDEC| REWINDMattia Colacicco; Cosetta Ciliberti; Gennaro Agrimi; Antonino Biundo; Isabella Pisano;doi: 10.3390/en15145217
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | FORBIO, EC | BIOPLAT-EUEC| FORBIO ,EC| BIOPLAT-EUCosette Khawaja; Rainer Janssen; Rita Mergner; Dominik Rutz; Marco Colangeli; Lorenzo Traverso; Maria Michela Morese; Manuela Hirschmugl; Carina Sobe; Alfonso Calera; David Cifuentes; Stefano Fabiani; Giuseppe Pulighe; Tiziana Pirelli; Guido Bonati; Oleksandra Tryboi; Olha Haidai; Raul Köhler; Dirk Knoche; Rainer Schlepphorst; Peter Gyuris;doi: 10.3390/en14061566
Bioenergy represents the highest share of renewable energies consumed in the European Union and is still expected to grow. This could be possible by exploring bioenergy production on Marginal, Underutilised, and Contaminated lands (MUC) that are not used for agricultural purposes and therefore, present no competition with food/feed production. In this paper, the viability and sustainability of bioenergy value chains on these lands is investigated and measures for market uptake were developed. Using three case study areas in Italy, Ukraine, and Germany, a screening of MUC lands was conducted, then an agronomic assessment was performed to determine the most promising crops. Then, techno-economic assessments followed by sustainability assessments were performed on selected value chains. This concept was then automated and expanded through the development of a webGIS tool. The tool is an online platform that allows users to locate MUC lands in Europe, to define a value chain through the selection of bioenergy crops and pathways, and to conduct sustainability assessments measuring a set of environmental, social, and economic sustainability indicators. The findings showed positive results in terms of profitability and greenhouse gas emissions for bioethanol production from willow in Ukraine, heat and power production from miscanthus, and biogas and chemicals production from grass in Germany. The webGIS tool is considered an important decision-making tool for stakeholders, which gives first insights on the viability and sustainability of bioenergy value chains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | TISS.EUEC| TISS.EUPiotr Gołasa; Wioletta Bieńkowska-Gołasa; Magdalena Golonko; Paulina Trębska; Piotr Gradziuk; Arkadiusz Gromada; Marcin Wysokiński;doi: 10.3390/en15228352
The article provides an overview of various studies on energy consumption in agriculture. The focus was in particular on the sensitivity of farms and agribusiness to fluctuations in the prices of energy carriers, which is currently a problem for the entire food industry. In addition to the prices of direct energy carriers, biofuels, the EU ETS system, and fertilizers were identified as the main areas that play a key role in shaping the direct and indirect impact on the economic performance of agricultural producers. Moreover, it was presented how sensitive the food sector is to the limitations of fertilizer production, during which by-products necessary in food processing are produced. The production of fertilizers consumes almost half of the energy used in agriculture, but the lack of fertilizers means yield drops of 30–50%. Therefore, high energy prices and disruptions in its supply are a threat to the food security of a country, both from the perspective of agriculture and processing. Based on the literature review, research gaps have been identified that should guide future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | GRACEEC| GRACEMislav Kontek; Luka Brezinščak; Vanja Jurišić; Ivan Brandić; Alan Antonović; Božidar Matin; Karlo Špelić; Tajana Krička; Ana Matin;doi: 10.3390/en16020738
A number of measures to diversify its energy supply sources and reduce its dependence on imported energy sources has been taken by the EU. These include pursuing new energy sources, such as renewable energy and liquefied natural gas; increasing the storage capacities; and investing in interconnectors and other infrastructure. However, these actions require long-term adjustment, while there is a need to find an option to meet the energy needs at a moment. One possible option is to utilize seed production wastes for energy production. This research paper aims to investigate the potential of utilizing seed production wastes (SPWs) for energy production in continental Croatia, and assess its feasibility. Eight different SPWs were used in this research, where their energy characteristics were determined and the theoretical thermal potential was calculated if they are used as raw material in the production of thermal energy through biomass and cogeneration power plants, or in biogas power plants. By using the available feedstock, it is theoretically possible to produce a total of 38,051.10 GJ of thermal energy by direct combustion of SPWs and 34,727.91 GJ by combustion of the produced biomethane. The SPWs of oilseed rape and beans contain the highest specific heat potential per hectare.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | AGROinLOG, EC | uP_runningEC| AGROinLOG ,EC| uP_runningAlessandro Suardi; Francesco Latterini; Vincenzo Alfano; Nadia Palmieri; Simone Bergonzoli; Luigi Pari;doi: 10.3390/en13061359
Pruning residues could represent an important biomass resources for energy production. Only in Italy it has been estimated that an annual quantity of biomass of over 2600 kt of dry matter could be obtained from olive residues. Several machines developed for pruning harvesting are available in the market, most of which are tractor-driven, while limited knowledge is available on performance, quality of work and costs of harvesting logistics based on stationary chippers. The aim of the present paper is to analyze machine performance of a forestry stationary chipper applied to pruning harvesting for what concerns work productivity, quality of the comminuted product and harvesting operating costs. This system is actually applied by Fiusis Company, an Italian enterprise which manages a biomass power plant exclusively powered by olive trees’ pruning residues, and it has never been analyzed in literature. The results obtained showed consistent work productivity, which resulted the highest ever found in olive pruning harvesting systems and equal to 5.23 ± 0.81 tdm·h−1. This high work productivity allowed also to obtain a little economic gain from a matter, which is actually considered a problem for olive groves’ owners and not a potential source of income. In particular, the use of a stationary chipper seemed very efficient in olive groves with a consistent amount of wooden residues to be processed and with big branches not harvestable by the most common towed pruning harvester. In addition, the stationary chipper has the advantage of avoiding the preliminary raking operation, which results in reduced costs for the farmer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 42 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Funded by:EC | FORBIOEC| FORBIOGiuseppe Pulighe; Guido Bonati; Stefano Fabiani; Tommaso Barsali; Flavio Lupia; Silvia Vanino; Pasquale Nino; Pasquale Arca; Pier Roggero;doi: 10.3390/en9110895
In the context of environmental sustainability there has been an increasing interest in bioenergy production from renewable resources, and is expected that European biofuel production from energy crops will increase as a consequence of the achievement of policy targets. The aim of this paper is to assess the agronomic feasibility of biomass crop cultivation to provide profitable renewable feedstocks in a marginal and heavy-metal polluted area located in the Sulcis district, Sardinia (Italy). Results from literature review and unpublished data from field trials carried out in Sardinia were analysed to establish the main agronomic traits of crops (e.g., yield potential and input requirements). A Geographical Information System (GIS)-based procedure with remotely sensed data is also used to evaluate the land suitability and the actual land use/cover, considering a future scenario of expansion of energy crops on these marginal areas avoiding potential conflicts with food production. The results of the review suggests that giant reed, native perennial grasses and milk thistle are the most suitable energy crops for this area. The land suitability analysis shows that about 5700 ha and 1000 ha could be available for feedstock cultivation in the study area and in the most polluted area, respectively. The results obtained from land suitability process and agronomic evaluation will serve as a base to support technical and economical feasibility studies, as well as for the evaluation of environmental sustainability of the cultivation in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | EN-SUGIEC| EN-SUGIKeyu Bao; Rushikesh Padsala; Volker Coors; Daniela Thrän; Bastian Schröter;doi: 10.3390/en13246488
The assessment of regional bioenergy potentials from different types of natural land cover is an integral part of simulation tools that aim to assess local renewable energy systems. This work introduces a new workflow, which evaluates regional bioenergy potentials and its impact on water demand based on geographical information system (GIS)-based land use data, satellite maps on local crop types and soil types, and conversion factors from biomass to bioenergy. The actual annual biomass yield of crops is assessed through an automated process considering the factors of local climate, crop type, soil, and irrigation. The crop biomass yields are validated with historic statistical data, with deviation less than 7% in most cases. Additionally, the resulting bioenergy potentials yield between 10.7 and 12.0 GWh/ha compared with 13.3 GWh/ha from other studies. The potential contribution from bioenergy on the energy demand were investigated in the two case studies, representing the agricultural-dominant rural area in North Germany and suburban region in South Germany: Simulation of the future bioenergy potential for 2050 shows only smaller effects from climate change (less than 4%) and irrigation (below 3%), but the potential to cover up to 21% of the transport fuels demand in scenario supporting biodiesel and bioethanol for transportation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | BioRenEC| BioRenAuthors: Magdalena Muradin; Joanna Kulczycka;doi: 10.3390/en13215757
Increasing interest in bioenergy production in the context of the transition towards a circular economy and the promotion of renewable energy has produced demands for optimization of the value chain of energy production to improve the environmental viability of the system. Hotspot analysis based on life cycle assessment (LCA) contributes to the mitigation of environmental burdens and is a very important step towards the implementation of a bioeconomy strategy. In this study, hotspots identified using two parallel pathways: a literature review and empirical research on four different biogas plants located in Poland. LCA and energy return on investment (EROI) analysis of the whole bioenergy production chain were considered to identify unit processes or activities that are highly damaging to the environment. The biogas plants differ mainly in the type of raw materials used as an input and in the method of delivery. The results show that the most impactful processes are those in the delivery of biomass, especially road transport by tractor. The second contributor was crop cultivation, where fossil fuels are also used. Although the EROI analysis indicates a negligible impact of transport on the energy efficiency of bioenergy plants, the environmental burden of biomass transportation should be taken into consideration when planning further measures to support the development of the bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | BECOOLEC| BECOOLLuigi Pari; Simone Bergonzoli; Paola Cetera; Paolo Mattei; Vincenzo Alfano; Negar Rezaei; Alessandro Suardi; Giuseppe Toscano; Antonio Scarfone;Eucalyptus spp. has received attention from the research and industrial field as a biomass crop because of its fast growth and high productivity. The features of this species match with the increasing demand for wood for energy production. Commonly, the wood used for energy production is converted in chips, a material susceptible to microbial degradation and energy losses if not properly stored before conversion. This study aims at investigating two outdoor storage systems of Eucalyptus wood chips (covered vs. uncovered), assessing the variation in moisture content, dry matter losses and fuel characteristics. The class size of the material was P16, which was obtained using a commercial chipper appositely searched to conduct the study. The results highlighted how the different storage methods were influenced by the climatic condition: the woody biomass covered showed the best performances in terms of dry matter losses achieving 2.7% losses vs. the 8.5% of the uncovered systems. However, fuel characteristics displayed minor changes that affected the final energy balance (∆En = −0.2% in covered; ∆En = −6.17% in uncovered). Particle size varied in both methods with respect to the start conditions, but the variation was not enough to determine a class change, which remained P16 even after storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, ItalyPublisher:MDPI AG Funded by:EC | BioEcon, EC | FACCE SURPLUSEC| BioEcon ,EC| FACCE SURPLUSAuthors: Lisa Mølgaard Lehmann; Magdalena Borzęcka; Katarzyna Żyłowska; Andrea Pisanelli; +2 AuthorsLisa Mølgaard Lehmann; Magdalena Borzęcka; Katarzyna Żyłowska; Andrea Pisanelli; Giuseppe Russo; Bhim Bahadur Ghaley;doi: 10.3390/en13040849
Given the environmental footprints of the conventional agriculture, it is imperative to test and validate alternative production systems, with lower environmental impacts to mitigate and adapt our production systems. In this study, we identified six production systems, four in Italy and two in Denmark, to assess the environmental footprint for comparison among the production systems and additionally with conventional production systems. SimaPro 8.4 software was used to carry out the life cycle impact assessment. Among other indicators, three significantly important indicators, namely global warming potential, acidification, and eutrophication, were used as the proxy for life cycle impact assessment. In Italy, the production systems compared were silvopastoral, organic, traditional, and conventional olive production systems, whereas in Denmark, combined food and energy production system was compared with the conventional wheat production system. Among the six production systems, conventional wheat production system in Denmark accounted for highest global warming potential, acidification, and eutrophication. In Italy, global warming potential was highest in traditional agroforestry and lowest in the silvopastoral system whereas acidification and eutrophication were lowest in the traditional production system with high acidification effects from the silvopastoral system. In Italy, machinery use contributed the highest greenhouse gas emissions in silvopastoral and organic production systems, while the large contribution to greenhouse gas emissions from fertilizer was recorded in the traditional and conventional production systems. In Denmark, the combined food and energy system had lower environmental impacts compared to the conventional wheat production system according to the three indicators. For both systems in Denmark, the main contribution to greenhouse gas emission was due to fertilizer and manure application. The study showed that integrated food and non-food systems are more environmentally friendly and less polluting compared to the conventional wheat production system in Denmark with use of chemical fertilizers and irrigation. The study can contribute to informed decision making by the land managers and policy makers for promotion of environmentally friendly food and non-food production practices, to meet the European Union targets of providing biomass-based materials and energy to contribute to the bio-based economy in Europe and beyond.
Energies arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | REWINDEC| REWINDMattia Colacicco; Cosetta Ciliberti; Gennaro Agrimi; Antonino Biundo; Isabella Pisano;doi: 10.3390/en15145217
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | FORBIO, EC | BIOPLAT-EUEC| FORBIO ,EC| BIOPLAT-EUCosette Khawaja; Rainer Janssen; Rita Mergner; Dominik Rutz; Marco Colangeli; Lorenzo Traverso; Maria Michela Morese; Manuela Hirschmugl; Carina Sobe; Alfonso Calera; David Cifuentes; Stefano Fabiani; Giuseppe Pulighe; Tiziana Pirelli; Guido Bonati; Oleksandra Tryboi; Olha Haidai; Raul Köhler; Dirk Knoche; Rainer Schlepphorst; Peter Gyuris;doi: 10.3390/en14061566
Bioenergy represents the highest share of renewable energies consumed in the European Union and is still expected to grow. This could be possible by exploring bioenergy production on Marginal, Underutilised, and Contaminated lands (MUC) that are not used for agricultural purposes and therefore, present no competition with food/feed production. In this paper, the viability and sustainability of bioenergy value chains on these lands is investigated and measures for market uptake were developed. Using three case study areas in Italy, Ukraine, and Germany, a screening of MUC lands was conducted, then an agronomic assessment was performed to determine the most promising crops. Then, techno-economic assessments followed by sustainability assessments were performed on selected value chains. This concept was then automated and expanded through the development of a webGIS tool. The tool is an online platform that allows users to locate MUC lands in Europe, to define a value chain through the selection of bioenergy crops and pathways, and to conduct sustainability assessments measuring a set of environmental, social, and economic sustainability indicators. The findings showed positive results in terms of profitability and greenhouse gas emissions for bioethanol production from willow in Ukraine, heat and power production from miscanthus, and biogas and chemicals production from grass in Germany. The webGIS tool is considered an important decision-making tool for stakeholders, which gives first insights on the viability and sustainability of bioenergy value chains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | TISS.EUEC| TISS.EUPiotr Gołasa; Wioletta Bieńkowska-Gołasa; Magdalena Golonko; Paulina Trębska; Piotr Gradziuk; Arkadiusz Gromada; Marcin Wysokiński;doi: 10.3390/en15228352
The article provides an overview of various studies on energy consumption in agriculture. The focus was in particular on the sensitivity of farms and agribusiness to fluctuations in the prices of energy carriers, which is currently a problem for the entire food industry. In addition to the prices of direct energy carriers, biofuels, the EU ETS system, and fertilizers were identified as the main areas that play a key role in shaping the direct and indirect impact on the economic performance of agricultural producers. Moreover, it was presented how sensitive the food sector is to the limitations of fertilizer production, during which by-products necessary in food processing are produced. The production of fertilizers consumes almost half of the energy used in agriculture, but the lack of fertilizers means yield drops of 30–50%. Therefore, high energy prices and disruptions in its supply are a threat to the food security of a country, both from the perspective of agriculture and processing. Based on the literature review, research gaps have been identified that should guide future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | GRACEEC| GRACEMislav Kontek; Luka Brezinščak; Vanja Jurišić; Ivan Brandić; Alan Antonović; Božidar Matin; Karlo Špelić; Tajana Krička; Ana Matin;doi: 10.3390/en16020738
A number of measures to diversify its energy supply sources and reduce its dependence on imported energy sources has been taken by the EU. These include pursuing new energy sources, such as renewable energy and liquefied natural gas; increasing the storage capacities; and investing in interconnectors and other infrastructure. However, these actions require long-term adjustment, while there is a need to find an option to meet the energy needs at a moment. One possible option is to utilize seed production wastes for energy production. This research paper aims to investigate the potential of utilizing seed production wastes (SPWs) for energy production in continental Croatia, and assess its feasibility. Eight different SPWs were used in this research, where their energy characteristics were determined and the theoretical thermal potential was calculated if they are used as raw material in the production of thermal energy through biomass and cogeneration power plants, or in biogas power plants. By using the available feedstock, it is theoretically possible to produce a total of 38,051.10 GJ of thermal energy by direct combustion of SPWs and 34,727.91 GJ by combustion of the produced biomethane. The SPWs of oilseed rape and beans contain the highest specific heat potential per hectare.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | AGROinLOG, EC | uP_runningEC| AGROinLOG ,EC| uP_runningAlessandro Suardi; Francesco Latterini; Vincenzo Alfano; Nadia Palmieri; Simone Bergonzoli; Luigi Pari;doi: 10.3390/en13061359
Pruning residues could represent an important biomass resources for energy production. Only in Italy it has been estimated that an annual quantity of biomass of over 2600 kt of dry matter could be obtained from olive residues. Several machines developed for pruning harvesting are available in the market, most of which are tractor-driven, while limited knowledge is available on performance, quality of work and costs of harvesting logistics based on stationary chippers. The aim of the present paper is to analyze machine performance of a forestry stationary chipper applied to pruning harvesting for what concerns work productivity, quality of the comminuted product and harvesting operating costs. This system is actually applied by Fiusis Company, an Italian enterprise which manages a biomass power plant exclusively powered by olive trees’ pruning residues, and it has never been analyzed in literature. The results obtained showed consistent work productivity, which resulted the highest ever found in olive pruning harvesting systems and equal to 5.23 ± 0.81 tdm·h−1. This high work productivity allowed also to obtain a little economic gain from a matter, which is actually considered a problem for olive groves’ owners and not a potential source of income. In particular, the use of a stationary chipper seemed very efficient in olive groves with a consistent amount of wooden residues to be processed and with big branches not harvestable by the most common towed pruning harvester. In addition, the stationary chipper has the advantage of avoiding the preliminary raking operation, which results in reduced costs for the farmer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 42 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Funded by:EC | FORBIOEC| FORBIOGiuseppe Pulighe; Guido Bonati; Stefano Fabiani; Tommaso Barsali; Flavio Lupia; Silvia Vanino; Pasquale Nino; Pasquale Arca; Pier Roggero;doi: 10.3390/en9110895
In the context of environmental sustainability there has been an increasing interest in bioenergy production from renewable resources, and is expected that European biofuel production from energy crops will increase as a consequence of the achievement of policy targets. The aim of this paper is to assess the agronomic feasibility of biomass crop cultivation to provide profitable renewable feedstocks in a marginal and heavy-metal polluted area located in the Sulcis district, Sardinia (Italy). Results from literature review and unpublished data from field trials carried out in Sardinia were analysed to establish the main agronomic traits of crops (e.g., yield potential and input requirements). A Geographical Information System (GIS)-based procedure with remotely sensed data is also used to evaluate the land suitability and the actual land use/cover, considering a future scenario of expansion of energy crops on these marginal areas avoiding potential conflicts with food production. The results of the review suggests that giant reed, native perennial grasses and milk thistle are the most suitable energy crops for this area. The land suitability analysis shows that about 5700 ha and 1000 ha could be available for feedstock cultivation in the study area and in the most polluted area, respectively. The results obtained from land suitability process and agronomic evaluation will serve as a base to support technical and economical feasibility studies, as well as for the evaluation of environmental sustainability of the cultivation in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | EN-SUGIEC| EN-SUGIKeyu Bao; Rushikesh Padsala; Volker Coors; Daniela Thrän; Bastian Schröter;doi: 10.3390/en13246488
The assessment of regional bioenergy potentials from different types of natural land cover is an integral part of simulation tools that aim to assess local renewable energy systems. This work introduces a new workflow, which evaluates regional bioenergy potentials and its impact on water demand based on geographical information system (GIS)-based land use data, satellite maps on local crop types and soil types, and conversion factors from biomass to bioenergy. The actual annual biomass yield of crops is assessed through an automated process considering the factors of local climate, crop type, soil, and irrigation. The crop biomass yields are validated with historic statistical data, with deviation less than 7% in most cases. Additionally, the resulting bioenergy potentials yield between 10.7 and 12.0 GWh/ha compared with 13.3 GWh/ha from other studies. The potential contribution from bioenergy on the energy demand were investigated in the two case studies, representing the agricultural-dominant rural area in North Germany and suburban region in South Germany: Simulation of the future bioenergy potential for 2050 shows only smaller effects from climate change (less than 4%) and irrigation (below 3%), but the potential to cover up to 21% of the transport fuels demand in scenario supporting biodiesel and bioethanol for transportation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | BioRenEC| BioRenAuthors: Magdalena Muradin; Joanna Kulczycka;doi: 10.3390/en13215757
Increasing interest in bioenergy production in the context of the transition towards a circular economy and the promotion of renewable energy has produced demands for optimization of the value chain of energy production to improve the environmental viability of the system. Hotspot analysis based on life cycle assessment (LCA) contributes to the mitigation of environmental burdens and is a very important step towards the implementation of a bioeconomy strategy. In this study, hotspots identified using two parallel pathways: a literature review and empirical research on four different biogas plants located in Poland. LCA and energy return on investment (EROI) analysis of the whole bioenergy production chain were considered to identify unit processes or activities that are highly damaging to the environment. The biogas plants differ mainly in the type of raw materials used as an input and in the method of delivery. The results show that the most impactful processes are those in the delivery of biomass, especially road transport by tractor. The second contributor was crop cultivation, where fossil fuels are also used. Although the EROI analysis indicates a negligible impact of transport on the energy efficiency of bioenergy plants, the environmental burden of biomass transportation should be taken into consideration when planning further measures to support the development of the bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | BECOOLEC| BECOOLLuigi Pari; Simone Bergonzoli; Paola Cetera; Paolo Mattei; Vincenzo Alfano; Negar Rezaei; Alessandro Suardi; Giuseppe Toscano; Antonio Scarfone;Eucalyptus spp. has received attention from the research and industrial field as a biomass crop because of its fast growth and high productivity. The features of this species match with the increasing demand for wood for energy production. Commonly, the wood used for energy production is converted in chips, a material susceptible to microbial degradation and energy losses if not properly stored before conversion. This study aims at investigating two outdoor storage systems of Eucalyptus wood chips (covered vs. uncovered), assessing the variation in moisture content, dry matter losses and fuel characteristics. The class size of the material was P16, which was obtained using a commercial chipper appositely searched to conduct the study. The results highlighted how the different storage methods were influenced by the climatic condition: the woody biomass covered showed the best performances in terms of dry matter losses achieving 2.7% losses vs. the 8.5% of the uncovered systems. However, fuel characteristics displayed minor changes that affected the final energy balance (∆En = −0.2% in covered; ∆En = −6.17% in uncovered). Particle size varied in both methods with respect to the start conditions, but the variation was not enough to determine a class change, which remained P16 even after storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, ItalyPublisher:MDPI AG Funded by:EC | BioEcon, EC | FACCE SURPLUSEC| BioEcon ,EC| FACCE SURPLUSAuthors: Lisa Mølgaard Lehmann; Magdalena Borzęcka; Katarzyna Żyłowska; Andrea Pisanelli; +2 AuthorsLisa Mølgaard Lehmann; Magdalena Borzęcka; Katarzyna Żyłowska; Andrea Pisanelli; Giuseppe Russo; Bhim Bahadur Ghaley;doi: 10.3390/en13040849
Given the environmental footprints of the conventional agriculture, it is imperative to test and validate alternative production systems, with lower environmental impacts to mitigate and adapt our production systems. In this study, we identified six production systems, four in Italy and two in Denmark, to assess the environmental footprint for comparison among the production systems and additionally with conventional production systems. SimaPro 8.4 software was used to carry out the life cycle impact assessment. Among other indicators, three significantly important indicators, namely global warming potential, acidification, and eutrophication, were used as the proxy for life cycle impact assessment. In Italy, the production systems compared were silvopastoral, organic, traditional, and conventional olive production systems, whereas in Denmark, combined food and energy production system was compared with the conventional wheat production system. Among the six production systems, conventional wheat production system in Denmark accounted for highest global warming potential, acidification, and eutrophication. In Italy, global warming potential was highest in traditional agroforestry and lowest in the silvopastoral system whereas acidification and eutrophication were lowest in the traditional production system with high acidification effects from the silvopastoral system. In Italy, machinery use contributed the highest greenhouse gas emissions in silvopastoral and organic production systems, while the large contribution to greenhouse gas emissions from fertilizer was recorded in the traditional and conventional production systems. In Denmark, the combined food and energy system had lower environmental impacts compared to the conventional wheat production system according to the three indicators. For both systems in Denmark, the main contribution to greenhouse gas emission was due to fertilizer and manure application. The study showed that integrated food and non-food systems are more environmentally friendly and less polluting compared to the conventional wheat production system in Denmark with use of chemical fertilizers and irrigation. The study can contribute to informed decision making by the land managers and policy makers for promotion of environmentally friendly food and non-food production practices, to meet the European Union targets of providing biomass-based materials and energy to contribute to the bio-based economy in Europe and beyond.
Energies arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu