- home
- Search
- Energy Research
- 12. Responsible consumption
- 9. Industry and infrastructure
- EU
- Energies
- Energy Research
- 12. Responsible consumption
- 9. Industry and infrastructure
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDAuthors:Mirosław Karczewski;
Mirosław Karczewski
Mirosław Karczewski in OpenAIREJanusz Chojnowski;
Janusz Chojnowski
Janusz Chojnowski in OpenAIREGrzegorz Szamrej;
Grzegorz Szamrej
Grzegorz Szamrej in OpenAIREdoi: 10.3390/en14165067
This article discusses the problems of exhaust gas emissions in the context of the possibility of their reduction through the use of fuels with hydrogen as an additive or hydrotreatment. These fuels, thanks to their properties, may be a suitable response to more and more demanding restrictions on exhaust emissions. The use of such fuels in reactivity controlled dual fuel engines (RCCI) is currently the most effective way of using them in internal combustion (IC) engines. Low-temperature combustion in this type of engine allows the use of all modern fuels intended for combustion engines with high thermal efficiency. Thermal efficiency higher than in classic engines allows for additional reduction of CO2 emissions. In this work, the research on this subject was compiled, and conclusions were drawn as to further possibilities of popularizing the use of these fuels in a wide spectrum of applications and the prospect of using them on a mass scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDAuthors:Mirosław Karczewski;
Mirosław Karczewski
Mirosław Karczewski in OpenAIREJanusz Chojnowski;
Janusz Chojnowski
Janusz Chojnowski in OpenAIREGrzegorz Szamrej;
Grzegorz Szamrej
Grzegorz Szamrej in OpenAIREdoi: 10.3390/en14165067
This article discusses the problems of exhaust gas emissions in the context of the possibility of their reduction through the use of fuels with hydrogen as an additive or hydrotreatment. These fuels, thanks to their properties, may be a suitable response to more and more demanding restrictions on exhaust emissions. The use of such fuels in reactivity controlled dual fuel engines (RCCI) is currently the most effective way of using them in internal combustion (IC) engines. Low-temperature combustion in this type of engine allows the use of all modern fuels intended for combustion engines with high thermal efficiency. Thermal efficiency higher than in classic engines allows for additional reduction of CO2 emissions. In this work, the research on this subject was compiled, and conclusions were drawn as to further possibilities of popularizing the use of these fuels in a wide spectrum of applications and the prospect of using them on a mass scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:MDPI AG Funded by:FCT | D4, EC | REEMAINFCT| D4 ,EC| REEMAINAuthors:Ivan Korolija;
Ivan Korolija
Ivan Korolija in OpenAIRERichard Greenough;
Richard Greenough
Richard Greenough in OpenAIREdoi: 10.3390/en9050335
This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC) used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:MDPI AG Funded by:FCT | D4, EC | REEMAINFCT| D4 ,EC| REEMAINAuthors:Ivan Korolija;
Ivan Korolija
Ivan Korolija in OpenAIRERichard Greenough;
Richard Greenough
Richard Greenough in OpenAIREdoi: 10.3390/en9050335
This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC) used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | ENERWATEREC| ENERWATERAuthors:Giuseppe Campo;
Antonella Miggiano;Giuseppe Campo
Giuseppe Campo in OpenAIREDeborah Panepinto;
Deborah Panepinto
Deborah Panepinto in OpenAIREMariachiara Zanetti;
Mariachiara Zanetti
Mariachiara Zanetti in OpenAIREdoi: 10.3390/en16062819
handle: 11583/2977538
The current geopolitical landscape of the European Union has made it clear that the energy sector must be a top priority in EU policy, especially in light of the sudden escalation of Russian–Ukrainian conflicts. Energy efficiency has been used as the first tool of EU policy to tackle energy and climate crises, given the issues surrounding energy vulnerability and the need to limit gas emissions that contribute to climate change. The white certificate mechanism in Italy has played a pivotal role in encouraging measures to achieve the country’s energy-saving goals. Given the high energy requirements of Wastewater Treatment Plants (WWTPs), especially for aeration in the biological section, this paper examines the replacement of the air distribution system for a large WWTP as a viable intervention. In order to provide economic perspective for the plant, both the discounted Payback Period (dPBP) and the Net Present Value (NPV) were calculated for the investment. When viewed through an economic lens, the dPBP metric exhibits values that span from less than 1 year to nearly 4.5 years. Additionally, the investment’s cost-effectiveness was emphasized by the NPV, which, depending on the factors considered, can exceed 17.5 million euros. Finally, given the centrality of the theme of climate change, the avoided greenhouse gas emissions generated by the efficiency intervention were calculated, according to the GHG Protocol, resulting in a quantity of avoided emissions equivalent to over 57,770 tonnes of CO2e. These results highlight important achievements in terms of both the cost-effectiveness of the plant and the reduction of greenhouse gas emissions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2819/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2819/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | ENERWATEREC| ENERWATERAuthors:Giuseppe Campo;
Antonella Miggiano;Giuseppe Campo
Giuseppe Campo in OpenAIREDeborah Panepinto;
Deborah Panepinto
Deborah Panepinto in OpenAIREMariachiara Zanetti;
Mariachiara Zanetti
Mariachiara Zanetti in OpenAIREdoi: 10.3390/en16062819
handle: 11583/2977538
The current geopolitical landscape of the European Union has made it clear that the energy sector must be a top priority in EU policy, especially in light of the sudden escalation of Russian–Ukrainian conflicts. Energy efficiency has been used as the first tool of EU policy to tackle energy and climate crises, given the issues surrounding energy vulnerability and the need to limit gas emissions that contribute to climate change. The white certificate mechanism in Italy has played a pivotal role in encouraging measures to achieve the country’s energy-saving goals. Given the high energy requirements of Wastewater Treatment Plants (WWTPs), especially for aeration in the biological section, this paper examines the replacement of the air distribution system for a large WWTP as a viable intervention. In order to provide economic perspective for the plant, both the discounted Payback Period (dPBP) and the Net Present Value (NPV) were calculated for the investment. When viewed through an economic lens, the dPBP metric exhibits values that span from less than 1 year to nearly 4.5 years. Additionally, the investment’s cost-effectiveness was emphasized by the NPV, which, depending on the factors considered, can exceed 17.5 million euros. Finally, given the centrality of the theme of climate change, the avoided greenhouse gas emissions generated by the efficiency intervention were calculated, according to the GHG Protocol, resulting in a quantity of avoided emissions equivalent to over 57,770 tonnes of CO2e. These results highlight important achievements in terms of both the cost-effectiveness of the plant and the reduction of greenhouse gas emissions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2819/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2819/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerAuthors:Papapetrou M.;
Papapetrou M.
Papapetrou M. in OpenAIREKosmadakis G.;
Kosmadakis G.
Kosmadakis G. in OpenAIREGiacalone F.;
Giacalone F.
Giacalone F. in OpenAIREOrtega-Delgado B.;
+3 AuthorsOrtega-Delgado B.
Ortega-Delgado B. in OpenAIREPapapetrou M.;
Papapetrou M.
Papapetrou M. in OpenAIREKosmadakis G.;
Kosmadakis G.
Kosmadakis G. in OpenAIREGiacalone F.;
Giacalone F.
Giacalone F. in OpenAIREOrtega-Delgado B.;
Ortega-Delgado B.
Ortega-Delgado B. in OpenAIRECipollina A.;
Cipollina A.
Cipollina A. in OpenAIRETamburini A.;
Tamburini A.
Tamburini A. in OpenAIREMicale G.;
Micale G.
Micale G. in OpenAIREdoi: 10.3390/en12173206
handle: 10447/393142
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerAuthors:Papapetrou M.;
Papapetrou M.
Papapetrou M. in OpenAIREKosmadakis G.;
Kosmadakis G.
Kosmadakis G. in OpenAIREGiacalone F.;
Giacalone F.
Giacalone F. in OpenAIREOrtega-Delgado B.;
+3 AuthorsOrtega-Delgado B.
Ortega-Delgado B. in OpenAIREPapapetrou M.;
Papapetrou M.
Papapetrou M. in OpenAIREKosmadakis G.;
Kosmadakis G.
Kosmadakis G. in OpenAIREGiacalone F.;
Giacalone F.
Giacalone F. in OpenAIREOrtega-Delgado B.;
Ortega-Delgado B.
Ortega-Delgado B. in OpenAIRECipollina A.;
Cipollina A.
Cipollina A. in OpenAIRETamburini A.;
Tamburini A.
Tamburini A. in OpenAIREMicale G.;
Micale G.
Micale G. in OpenAIREdoi: 10.3390/en12173206
handle: 10447/393142
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013Publisher:MDPI AG Funded by:EC | BEYWATCHEC| BEYWATCHdoi: 10.3390/en6042262
handle: 10447/76428
The paper outlines energy management concepts and the smart grid evolution. The necessity of considering energy management as a crucial innovation in load supplying to permit a more powerful penetration of renewable energy usage at the building and city level and to perform energy savings and CO2 emissions reduction is pointed out. The driving factors to enhance the current power distribution are presented, and the benefits concerning smart grids are underlined. In the paper, a specific energy management analysis is reported by considering all the electric value chain, and the demand-side management and distributed on site control actions are described. To verify the benefit of energy management control actions, a house simulator and a grid simulator are here presented and the results discussed in three different scenarios. Moreover, in the paper, the evaluation of ecological benefits are reported, and a cost benefit analysis of the energy management system is performed. Results pointed out that with the standard control actions, the system is not economic for the end user, and only by using energy management systems with renewable energy, in site production remunerative energy savings can be reached. Finally the evolution of smart grids is presented, focusing on potential benefits and technical problems. The active grids, microgrids and virtual utility are described, and final consideration on hypothetical scenarios is presented in the conclusion.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/4/2262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6042262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 102 citations 102 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/4/2262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6042262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013Publisher:MDPI AG Funded by:EC | BEYWATCHEC| BEYWATCHdoi: 10.3390/en6042262
handle: 10447/76428
The paper outlines energy management concepts and the smart grid evolution. The necessity of considering energy management as a crucial innovation in load supplying to permit a more powerful penetration of renewable energy usage at the building and city level and to perform energy savings and CO2 emissions reduction is pointed out. The driving factors to enhance the current power distribution are presented, and the benefits concerning smart grids are underlined. In the paper, a specific energy management analysis is reported by considering all the electric value chain, and the demand-side management and distributed on site control actions are described. To verify the benefit of energy management control actions, a house simulator and a grid simulator are here presented and the results discussed in three different scenarios. Moreover, in the paper, the evaluation of ecological benefits are reported, and a cost benefit analysis of the energy management system is performed. Results pointed out that with the standard control actions, the system is not economic for the end user, and only by using energy management systems with renewable energy, in site production remunerative energy savings can be reached. Finally the evolution of smart grids is presented, focusing on potential benefits and technical problems. The active grids, microgrids and virtual utility are described, and final consideration on hypothetical scenarios is presented in the conclusion.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/4/2262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6042262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 102 citations 102 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/4/2262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6042262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | INNOPATHS, EC | NEWTRENDSEC| INNOPATHS ,EC| NEWTRENDSAuthors:Maksymilian Kochański;
Maksymilian Kochański
Maksymilian Kochański in OpenAIREKatarzyna Korczak;
Katarzyna Korczak
Katarzyna Korczak in OpenAIRETadeusz Skoczkowski;
Tadeusz Skoczkowski
Tadeusz Skoczkowski in OpenAIREdoi: 10.3390/en14175259
This paper is the first country-specific analysis of the market-driven Smart Metering innovation system, covering technologies, actors, and policies. It provides new insights on the key enablers and barriers in the rollout of electricity Smart Meters (SMs) without binding regulatory mandate. The presented research is based on the Technology Innovation System (TIS) analysis for Poland, where an obligation scheme for the rolling out of SMs has been introduced very recently. Still, the number of SMs installed places the country in the top 10 Member States of the European Union. The implementation of SMs is progressing in a complex, multi-actor innovation system, shaped by the leading role of Distribution System Operators (DSOs). The article analyses the key elements of the SM innovation system (technologies and infrastructures, actors and networks, institutions and policies) and characterizes their interaction based on desk research and a critical assessment of regulations, statistics, and literature. The major enablers of the rollout are DSOs expectations of benefits, which have been instigated by the market regulator’s benevolence in tariffs approval. On the other hand, the major barriers are delayed and incomplete public policy instruments. Results of the study can inform the development of other market-driven SM deployments around the world.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | INNOPATHS, EC | NEWTRENDSEC| INNOPATHS ,EC| NEWTRENDSAuthors:Maksymilian Kochański;
Maksymilian Kochański
Maksymilian Kochański in OpenAIREKatarzyna Korczak;
Katarzyna Korczak
Katarzyna Korczak in OpenAIRETadeusz Skoczkowski;
Tadeusz Skoczkowski
Tadeusz Skoczkowski in OpenAIREdoi: 10.3390/en14175259
This paper is the first country-specific analysis of the market-driven Smart Metering innovation system, covering technologies, actors, and policies. It provides new insights on the key enablers and barriers in the rollout of electricity Smart Meters (SMs) without binding regulatory mandate. The presented research is based on the Technology Innovation System (TIS) analysis for Poland, where an obligation scheme for the rolling out of SMs has been introduced very recently. Still, the number of SMs installed places the country in the top 10 Member States of the European Union. The implementation of SMs is progressing in a complex, multi-actor innovation system, shaped by the leading role of Distribution System Operators (DSOs). The article analyses the key elements of the SM innovation system (technologies and infrastructures, actors and networks, institutions and policies) and characterizes their interaction based on desk research and a critical assessment of regulations, statistics, and literature. The major enablers of the rollout are DSOs expectations of benefits, which have been instigated by the market regulator’s benevolence in tariffs approval. On the other hand, the major barriers are delayed and incomplete public policy instruments. Results of the study can inform the development of other market-driven SM deployments around the world.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwedenPublisher:MDPI AG Funded by:EC | EN SGplusRegSysEC| EN SGplusRegSysAuthors:Hyunkyo Yu;
Hyunkyo Yu
Hyunkyo Yu in OpenAIREErik O. Ahlgren;
Erik O. Ahlgren
Erik O. Ahlgren in OpenAIREdoi: 10.3390/en16114264
Effective planning of urban heating systems is crucial for achieving net-zero emissions at the city level. In particular, the spatial dimension plays a pivotal role in shaping the design and operation of these systems. Nonetheless, the integration of urban spatial and energy planning is rarely performed. To address this deficit, the current study proposes a participatory modeling methodology that explicitly incorporates the spatial dimension to facilitate integration and decision-making in the planning of urban heating systems. The methodology is applied to a case municipality to evaluate its benefits and implications for stakeholders involved in urban heat planning. The results reveal that the participatory nature of the methodology enhances the legitimacy, transparency, and relevance of the modeling process by engaging urban stakeholders, so as to exploit their valuable knowledge, experience, and understanding of the local context and related challenges. The developed methodology provides a spatial representation of district heating expansion, heating technology transition at the district-building level, and the installed capacities in each district, thereby improving the coherence of urban heat planning integrated with other urban plans. Consequently, the incorporation of the spatial dimension adds a nuanced layer of modeling outcomes to standard city level optimization models.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4264/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4264/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwedenPublisher:MDPI AG Funded by:EC | EN SGplusRegSysEC| EN SGplusRegSysAuthors:Hyunkyo Yu;
Hyunkyo Yu
Hyunkyo Yu in OpenAIREErik O. Ahlgren;
Erik O. Ahlgren
Erik O. Ahlgren in OpenAIREdoi: 10.3390/en16114264
Effective planning of urban heating systems is crucial for achieving net-zero emissions at the city level. In particular, the spatial dimension plays a pivotal role in shaping the design and operation of these systems. Nonetheless, the integration of urban spatial and energy planning is rarely performed. To address this deficit, the current study proposes a participatory modeling methodology that explicitly incorporates the spatial dimension to facilitate integration and decision-making in the planning of urban heating systems. The methodology is applied to a case municipality to evaluate its benefits and implications for stakeholders involved in urban heat planning. The results reveal that the participatory nature of the methodology enhances the legitimacy, transparency, and relevance of the modeling process by engaging urban stakeholders, so as to exploit their valuable knowledge, experience, and understanding of the local context and related challenges. The developed methodology provides a spatial representation of district heating expansion, heating technology transition at the district-building level, and the installed capacities in each district, thereby improving the coherence of urban heat planning integrated with other urban plans. Consequently, the incorporation of the spatial dimension adds a nuanced layer of modeling outcomes to standard city level optimization models.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4264/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4264/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | BAMBOOEC| BAMBOOAuthors:Anton Beck;
Anton Beck
Anton Beck in OpenAIREJulian Unterluggauer;
Franz Helminger; Irene Solís-Gallego;Julian Unterluggauer
Julian Unterluggauer in OpenAIREdoi: 10.3390/en16020852
Steel production is one of the biggest emitters of greenhouse gas in the industrial sector with about 8% of total global CO2 emissions. Although the majority of emissions can be attributed to primary steel production, there is also potential for reducing CO2 emissions in downstream steel processing. Large industrial furnaces, which are necessary for heating steel, are currently primarily fired with natural gas and by-product gases from primary steel production, offering great potential for heat recovery measures from exhaust gases. However, switching to alternative climate-neutral fuels could change this potential and thus jeopardize the economic viability of heat recovery measures. In the present work, it was therefore examined to what extent a change in energy sources in industrial furnaces affects the potential use of heat recovery in steel processing. For this purpose, an optimization model was used that takes into account heat recovery by means of direct heat transfer, heat pumps and heat distribution systems. Potential future changes in energy supply for industrial furnaces were examined using different storylines. Two different energy price scenarios were also considered to address uncertain developments in energy markets. The results show that heat recovery is a cost-effective and definitely recommendable measure. Switching to alternative fuels has little impact on the use of heat recovery. Electrification and thus the elimination of flue gas, on the other hand, greatly reduces the potential for heat recovery.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/852/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/852/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | BAMBOOEC| BAMBOOAuthors:Anton Beck;
Anton Beck
Anton Beck in OpenAIREJulian Unterluggauer;
Franz Helminger; Irene Solís-Gallego;Julian Unterluggauer
Julian Unterluggauer in OpenAIREdoi: 10.3390/en16020852
Steel production is one of the biggest emitters of greenhouse gas in the industrial sector with about 8% of total global CO2 emissions. Although the majority of emissions can be attributed to primary steel production, there is also potential for reducing CO2 emissions in downstream steel processing. Large industrial furnaces, which are necessary for heating steel, are currently primarily fired with natural gas and by-product gases from primary steel production, offering great potential for heat recovery measures from exhaust gases. However, switching to alternative climate-neutral fuels could change this potential and thus jeopardize the economic viability of heat recovery measures. In the present work, it was therefore examined to what extent a change in energy sources in industrial furnaces affects the potential use of heat recovery in steel processing. For this purpose, an optimization model was used that takes into account heat recovery by means of direct heat transfer, heat pumps and heat distribution systems. Potential future changes in energy supply for industrial furnaces were examined using different storylines. Two different energy price scenarios were also considered to address uncertain developments in energy markets. The results show that heat recovery is a cost-effective and definitely recommendable measure. Switching to alternative fuels has little impact on the use of heat recovery. Electrification and thus the elimination of flue gas, on the other hand, greatly reduces the potential for heat recovery.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/852/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/852/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMdoi: 10.3390/en7116825
There is a strong interest in the EU to promote the bioeconomy sector within the EU 2020 strategy. It is thus necessary to assure a sound sustainability framework. This paper reviews international and European sustainability initiatives mainly for biomass for bioenergy. The basic and advanced sustainability indicators are identified and described with particular attention to those points without agreement between stakeholders. Based on the state of the discussion, some suggestions to enhance the sustainable development of the bioeconomy sector are proposed.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/11/6825/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en71...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7116825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/11/6825/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en71...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7116825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMdoi: 10.3390/en7116825
There is a strong interest in the EU to promote the bioeconomy sector within the EU 2020 strategy. It is thus necessary to assure a sound sustainability framework. This paper reviews international and European sustainability initiatives mainly for biomass for bioenergy. The basic and advanced sustainability indicators are identified and described with particular attention to those points without agreement between stakeholders. Based on the state of the discussion, some suggestions to enhance the sustainable development of the bioeconomy sector are proposed.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/11/6825/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en71...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7116825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/11/6825/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en71...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7116825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Funded by:EC | PHYLOCANCEREC| PHYLOCANCERAuthors:Anna Pražanová;
Anna Pražanová
Anna Pražanová in OpenAIREVaclav Knap;
Vaclav Knap
Vaclav Knap in OpenAIREDaniel-Ioan Stroe;
Daniel-Ioan Stroe
Daniel-Ioan Stroe in OpenAIREdoi: 10.3390/en15031086
During recent years, emissions reduction has been tightened worldwide. Therefore, there is an increasing demand for electric vehicles (EVs) that can meet emission requirements. The growing number of new EVs increases the consumption of raw materials during production. Simultaneously, the number of used EVs and subsequently retired lithium-ion batteries (LIBs) that need to be disposed of is also increasing. According to the current approaches, the recycling process technology appears to be one of the most promising solutions for the End-of-Life (EOL) LIBs—recycling and reusing of waste materials would reduce raw materials production and environmental burden. According to this performed literature review, 263 publications about “Recycling of Lithium-ion Batteries from Electric Vehicles” were classified into five sections: Recycling Processes, Battery Composition, Environmental Impact, Economic Evaluation, and Recycling & Rest. The whole work reviews the current-state of publications dedicated to recycling LIBs from EVs in the techno-environmental-economic summary. This paper covers the first part of the review work; it is devoted to the recycling technology processes and points out the main study fields in recycling that were found during this work.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Funded by:EC | PHYLOCANCEREC| PHYLOCANCERAuthors:Anna Pražanová;
Anna Pražanová
Anna Pražanová in OpenAIREVaclav Knap;
Vaclav Knap
Vaclav Knap in OpenAIREDaniel-Ioan Stroe;
Daniel-Ioan Stroe
Daniel-Ioan Stroe in OpenAIREdoi: 10.3390/en15031086
During recent years, emissions reduction has been tightened worldwide. Therefore, there is an increasing demand for electric vehicles (EVs) that can meet emission requirements. The growing number of new EVs increases the consumption of raw materials during production. Simultaneously, the number of used EVs and subsequently retired lithium-ion batteries (LIBs) that need to be disposed of is also increasing. According to the current approaches, the recycling process technology appears to be one of the most promising solutions for the End-of-Life (EOL) LIBs—recycling and reusing of waste materials would reduce raw materials production and environmental burden. According to this performed literature review, 263 publications about “Recycling of Lithium-ion Batteries from Electric Vehicles” were classified into five sections: Recycling Processes, Battery Composition, Environmental Impact, Economic Evaluation, and Recycling & Rest. The whole work reviews the current-state of publications dedicated to recycling LIBs from EVs in the techno-environmental-economic summary. This paper covers the first part of the review work; it is devoted to the recycling technology processes and points out the main study fields in recycling that were found during this work.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu