search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 3. Good health
  • FI
  • English

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdukalikova, Anara;

    Electronic health or E-Health is spreading extensively nowadays. E-Health solutions help to achieve the sustainability goal of increasing the expected lifetime while improving the quality of life by providing a constant healthcare monitoring. The focus of this work is on studying the detection of one of the cardiovascular diseases – Atrial Fibrillation (AF) arrhythmia, which has a severe influence on the heart health conditions and could even increase the risk of death. Therefore, it is important to detect it as early as possible. In this thesis we focused on studying various machine learning techniques for AF detection using short single lead ECG recordings. A web-based solution was built as a final prototype, which first simulates the reception of a recorded signal, conducts the preprocessing, makes a prediction of the AF presence, and visualizes the result. For the AF detection the relatively high accuracy score was achieved comparable to the one of the state-of-the-art. The work was based on the investigation of the proposed architectures and the usage of the database of signals from the 2017 PhysioNet/CinC Challenge. However, an additional constraint was introduced to the original problem formulation, since the idea of a future deployment on the resource-limited devices places the restrictions on the complexity of the computations being performed for achieving the prediction. Therefore, this constraint was considered during the development phase of the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2018
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2018
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mwakangale, Jacqueline C.D.;

    Water treatment technologies are seen as the best alternative to be considered for adoption in developing countries where access to portable water supply that is free of pathogens is yet a challenge. This study intended to assess impact brought forth by a project, which employed a water treatment technology in rural settings of Morogoro Region in Tanzania. The project used solar photovoltaic panels to trap solar energy, converted to mechanical power to treat water with the help of sterilization ultraviolet membrane. A comparative analysis was used as an assessment framework to study impacts of the project with respect to the quality of approach used during the project life cycle. Determinants of impacts took into account social, economic and environment aspects whereas determinants of the quality of approaches taken considered six elements which are: character of participation; success, nature of institution and capacity building efforts; diversity, multiplicity and adaptability of ideas promoted by the project; accounting for heterogeneity and dynamism; understanding and use of local knowledge, skills, initiative and constraints; and recognizing the influence of external conditions, markets and policies. Results indicate that the project has intervened positively in the provision of safe portable water to the selected project sites. The quality of approaches taken had profound effect to the delivered impacts. These impacts are seen in the reduced recurring outburst of water-borne diseases such as typhoid and diarrhea. Another impact observed is in the downturn to a certain extent in the use of wood fuel for boiling. Reduced recurring of waterborne diseases has boosted pupils’ attendance at school. Furthermore, the study argues that adoption of water treatment technologies in rural settings has a potential to conserve the environment, improve health of people through the provision of safe portable water, which ultimately contribute to rural development. However, sustainability of the installed purification systems is in question if it will continue to function over the long run. Observed barriers are lack of solid economic means for sustaining operations and maintenances.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roume, Hugo;

    Biological wastewater treatment is based on the use of microorganisms capable of intense metabolic activity that results in the removal of a large proportion of organic and inorganic contaminants. Given copious amounts of energy-dense organic molecules such as lipids accumulated by the microbial biomass, chemical energy may be directly harnessed from this for biofuel production. Here, lipid accumulating organism (LAO)-enriched microbial communities were studied using a molecular eco-systems biology approach. This involved the development of necessary methodologies including a new comprehensive biomolecular extraction method, yielding high-quality DNA, RNA, proteins and metabolites, as well as bioinformatic approaches for integrating and analysing the derived high-throughput genomic, transcriptomic, proteomic and metabolomic data. At the inception of the project, a full-scale wastewater treatment plant (WWTP) system with a strong presence of LAOs especially during winter months, i.e. the Schifflange WWTP (Esch-sur-Alzette, Luxembourg), was identified and selected for further study. 16S rRNA amplicon sequencing highlighted the presence of ubiquitous lipid accumulating bacteria closely related to Candidatus Microthrix parvicella which increase in abundance from autumn to winter over other highly abundant community members belonging to Alkanindiges spp. and Acinetobacter spp. In order to elucidate compositional, genetic and functional differences between autumn and winter LAO communities, a comparative integrative omic analysis was carried out on rationally selected autumn and winter LAO community samples. The results from metabolomic/lipidomic analyses between intra- and extracellular compartments support previous models of uptake of unprocessed long chain fatty acids (LCFAs) from the wastewater environment and their storage as triacyglycerols within LAOs. Furthermore, a tailored computational framework for the integration of multi-omic datasets into reconstructed community-wide metabolic networks and models was developed. The resulting networks provide overviews of functional capacity of the sampled LAO communities by incorporating gene copy numbers, transcript levels and protein frequency across the two studied environmental conditions. The identification of genes overexpressed, strongly associated with a specific season and/or possessing a high clustering coefficient suggests the existence of keystone genes, analogous to keystone species in species interaction networks. Examples of such keystone genes in the context of the LAO communities include genes coding for proteins involved in nitrogen and glycerolipid metabolism. The existence of such keystone genes opens up exciting possibilities for prediction and control strategies of microbial communities at the dawn of the field of Eco-Systems Biology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brink, Paul J. Van den; Boxall, Alistair B.A.; Maltby, Lorraine; Brooks, Bryan W.; +32 Authors

    The United Nations’ Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. peerReviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Obijaju, Peter Paul;

    Inadequate final disposal of municipal solid waste (MSW) is associated with significant greenhouse gas (GHG) emission, environmental, health and safety issues, space consumption, public health and developmental issues in general. The environmental impact of waste is mostly felt in developing countries, inadequate waste management and treatment solution, inadequate policies and outdated practices are some of the factors leading to the significantly high final disposal of waste in dumps in developing countries. Brazil and other developing countries are changing the status quo by adopting polices that will adequately address this problem of inadequate waste management and disposal. Life cycle analysis (LCA) identifies the potential environmental impact of a product though environmental impact assessment, International Organization for Standardization (ISO) created the ISO 14040 and ISO 14044 to serve as principle guidelines for conducting LCA. Various waste treatment solution was applied to identify the waste management solution with the least Global warming potential (GWP) for treating the MSW generated from the city of Rio de Janerio, while reducing significantly final waste disposed in landfill.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2016
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2016
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Solak, Nuri;

    Strontium- and magnesium-doped lanthanum gallate (LSGM) perovskite-type compounds and doped ceria-based materials have recently been considered the most promising solid electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. While nickel metal is commonly used for the fabrication of cermet-type anodes, the rare earth nickelates, such as Sr-doped La2NiO4 (LSN), are recently developed high-performance cathode materials. For successful implementation in IT-SOFC, it is therefore essential to know the phase equilibria and thermodynamic properties for systems representing the solid electrolyte and electrode materials across their various combinations. This thesis aims to determine the phase equilibria and the thermodynamics of the relevant phases in the systems La-Sr-Ga-Mg-Ni-O, Ce-Gd-Sr-Ni-O, and Ce-Gd-La-Ni-O. Subsystems of these multi-component systems were thermodynamically modeled, based on the available literature and experimental data obtained from this work. The experimental studies were designed based on the calculated phase diagrams. A minimum number of compositions was chosen strategically to obtain a preliminary prediction of the phases in equilibrium in each constituent subsystem. Finally, the experimental and computational results were used to predict the compatibility/reactivity of IT-SOFC components under fabrication and/or operation conditions. Various experimental techniques were employed for determination of the phase equilibria such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD), Differential Scanning and Adiabatic Calorimetry, and Mass Spectrometry (MS). The CALPHAD-method (CALculation of PHAse Diagrams) and THERMOCALC software were used to obtain self-consistent sets of Gibbs energy functions. The following systems were investigated experimentally: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, La-Sr-Ga-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O, Ce-Gd-Ni-O, Ce-Gd-Sr-O, Ce-Sr-Ni-O, Gd-Sr-Ni-O, Ce-Gd-Sr-Ni-O and Ce-Gd-La-Ni-O. Using results from this experimental work and data from the literature, the following systems were thermodynamically modeled: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O and Gd-Sr-O. The systems, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, and Ce-Gd-Ni-O were extrapolated using parameters optimized from the constituent lower-order systems. In the La-Ni-O system, the enthalpy of formation, entropy and heat capacity of La3Ni2O7, La4Ni3O10, and LaNiO3, were determined experimentally for the first time using equilibration with the gas phase, adiabatic calorimetry and differential scanning calorimetry. In the La-Ga-Ni-O, La-Sr-Ni-O and La-Mg-Ni-O systems, extended solid solutions of La(Ga,Ni)O3, La2(Ni,Ga)O4, La4(Ni,Ga)3O10, (La,Sr)2NiO4, and La2(Ni,Mg)O4 were found, and the limits of their homogeneity ranges have been established for the first time. In addition, the compound LaNiGa11O19, with a magnetoplumbite-type structure was identified, which has not been reported in the literature to date. In the La-Ga-Mg-Ni-O system, the temperature dependence of the quasi-quaternary homogeneity range of La(Ga,Mg,Ni)O3 was determined. In the La-Sr-Ga-Ni-O system, a reaction was observed between LaGaO3 and LaSrNiO4 that formed a melilite-type La1-xSr1+xGa3O7+z, LaGaSrO4 and NiO phase. Similar reaction mechanisms were observed in the La-Sr-Ga-Mg-Ni-O system. Experiments in the Ce-Ni-O system were conducted in air as well as in a reducing atmosphere. It has been found that NiO does not react with CeO2. In the Ce-Sr-O system, the entropy and heat capacity of Sr2CeO4 were experimentally determined for the first time. In the Gd-Ni-O system a eutectic reaction was observed (liquid <=> B-Gd2O3 + NiO). The Gd-Sr-O system was modeled thermodynamically based on data from the literature and the experimentally determined homogeneity range on the Gd2O3-rich site. In the Ce-Sr-Ni-O system the solid solution of (Ce,Sr)2NiO4-z was determined. No reaction between NiO and SrCeO3 / Sr2CeO4 was found. Similarly, in the Ce-Gd-Ni-O system, no reaction was observed between (Ce,Gd)O2-z and NiO. In contrast, solid solutions of Sr(Ce,Gd)O3, Sr2(Ce,Gd)O4 and (Gd,Sr)2(Sr,Ce)O4 were determined in the Ce-Gd-Sr-O system. Also, an extended solid solution of (Gd,Sr)2NiO4 was found in the Gd-Sr-Ni-O system that does not exist in the quasi-binary sections, but is stable in higher-order systems only because a solid solution is formed. It has been also found that there is no NiO solubility in the Gd2SrO4 phase. It could be concluded that doped ceria-based materials are chemically compatible with NiO during conditions typical for both the fabrication and the operation of IT-SOFC’s, whereas LSGM-type electrolytes react with NiO under the fuel cell fabrication conditions. Moreover, although La2NiO4 is a high-performance cathode, it cannot be used in combination with LSGM- or CGO-type electrolytes, due to its reactivity with both of these materials under fabrication conditions. Strontium- und Magnesium- dotierte Lanthangallat Verbindungen des Perowskit-Typs und dotierte Ceroxid-basierte Materialien (DC) wurden kürzlich als hoffnungsvolle Festelektrolyte für die Festoxidbrennstoffzelle bei intermediärer Temperatur (IT-SOFC) betrachtet. Normalerweise wird metallisches Nickel zur Herstellung der Komposit-Anode verwendet, wobei neuerdings die Nickelate von Seltenerdmetallen, wie z.B. Sr-dotierte La2NiO4 (LSN), zur Hochleistungskathode entwickelt werden. Um IT-SOFC erfolgreich herzustellen und auszunutzen sind die Kenntnisse der Phasengleichgewichten und Thermodynamik für Systeme notwendig, welche die Kathoden, Festelektrolyt, Anoden und ihre mögliche Kombinationen repräsentieren. Ziel der Arbeit ist die Phasengleichgewichten und Thermodynamik von La-Sr-Ga-Mg-Ni-O, Ce-Gd-Sr-Ni-O und Ce-Gd-La-Ni-O Systeme zu bestimmen. Die Subsysteme wurden thermodynamisch berechnet auf der Basis von Literaturdaten, während die experimentelle Untersuchungen durch berechnete Phasendiagramm entworfen wurden, wodurch weniger Aufwand benötigt wurde. Schließlich wurden die experimentellen und rechnerischen Ergebnisse verwendet, um die Kompatibilität und Reaktivität von IT-SOFC Komponenten unter Herstellung- und Arbeitsbedingungen vorauszusagen. Für die experimentelle Bestimung der Phasengleichgewichte der Systeme wurden verschiedene Untersuchungsmethoden verwendet, wie z.B. Rasterelektronmikroskopie (REM), Energiedispersive Röntgenspektroskopie (EDX), Dynamische Differenzkalorimetrie und Thermogravimetrie. Die CALPHAD-Methode (Calculation of PHAse Diagrams) mit THERMOCALC Software wurde auch verwendet, um eine selbstkonsequente Reihe von freien Enthalpie Funktionen zu bekommen. Die folgenden Systeme wurden experimentell untersucht: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, La-Sr-Ga-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O, Ce-Gd-Ni-O, Ce-Gd-Sr-O, Ce-Sr-Ni-O, Gd-Sr-Ni-O, Ce-Gd-Sr-Ni-O, Ce-Gd-La-Ni-O. Durch erhaltenen Ergebnisse und Literaturdaten wurden thermodynamische Modelle für die folgenden Systemen gestellt: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O. Mit optimierte Parameter von Systemen niedrigerer Ordnung wurden die Systeme La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, und Ce-Gd-Ni-O extrapoliert. Im La-Ni-O System wurden die Bildungsenthalpie, Entropie und Wärmekapazität von La3Ni2O7, La4Ni3O10 und LaNiO3 durch Gleichgewicht mit Gasphase, adiabatische Kalorimetrie und Dynamische Differenzkalorimetrie experimentell bestimmt. In den La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O Systeme wurden erweiterten Mischkristalle La(Ga,Ni)O3, La2(Ni,Ga)O4, La4(Ni,Ga)3O10, (La,Sr)2NiO4 und La2(Ni,Mg)O4 gefunden und ihre Homogenitätsbereichen bestimmt. Zusätzlich wurden die Magnetoplumbite-Typ Verbindung LaNiGa11O19 gefunden, die bislang noch nicht in der Literaturen bekannt war. Im La-Ga-Mg-Ni-O System wurde die Temperaturabhängigkeit von La(Ga,Mg,Ni)O3 Homogenitätsbereich untersucht. Im La-Sr-Ga-Ni-O System wurde eine Reaktion zwischen LaGaO3 und LaSrNiO4 untersucht, die Melilite-Typ La1-xSr1+xGa3O7+z, LaGaSrO4 und NiO bildet. Der gleiche Reaktionsmechanismus wurde auch im La-Sr-Ga-Mg-Ni-O System beobachtet. Die Experimente für Ce-Ni-O System wurden sowohl an Luft als auch im Reduktions- Atmosphäre durchgeführt. Es wurde gefunden, dass NiO nicht mit CeO2 reagiert. Für Ce-Sr-O System wurden zuerst die Entropie und Wärmekapazität von Sr2CeO4 experimentell bestimmt. Für Gd-Ni-O System wurde eine eutektische Reaktion (Schmelze <=> B-Gd2O3 + NiO) untersucht. Für das Gd-Sr-O System wurde ein thermodynamisches Modell aus Literaturdaten aufgestellt und auf Gd2O3-reichen Seite die Homogenitätsbereiche experimentell untersucht. Im Ce-Sr-Ni-O System wurde auf SrO-reichen Seite das Mischkristall (Ce,Sr)2NiO4-z untersucht. Es wurde festgestellt, dass keine Reaktion zwischen NiO und SrCeO3 / Sr2CeO4 stattgefunden hat. Im Ce-Gd-Ni-O System wurde keine Reaktion zwischen (Ce,Gd)O2-z und NiO gefunden. Im Ce-Gd-Sr-O System wurden Mischkristalle Sr(Ce,Gd)O3, Sr2(Ce,Gd)O4 und (Gd,Sr)2(Sr,Ce)O4 untersucht. Im Gd-Sr-Ni-O System wurde ein Mischkristall (Gd,Sr)2NiO4 untersucht, der in quasi-binären Schnitten nicht existiert, aber im System höherer Ordnung stabilisiert wird. Es wurde auch gefunden, dass in die Gd2SrO4 Phase keine NiO gelöst wird. Daraus kann man schliessen, dass dotierte Ceroxide (DC) basierte Materialien mit NiO während der Herstellung und Betrieb von IT-SOFC chemisch kompatibel sind, wobei LSGM Elektrolyte unter Herstellungsbedingungen in der Zelle mit NiO reagieren. Obwohl La2NiO4 eine Hochleistungskathode ist, lässt es sich nicht in Kombination mit LSGM oder DC benutzen, weil es mit den beiden Materialien unter Herstellungsbedingungen in der Zelle miteinander reagiert.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.18419/op...
    Doctoral thesis . 2007
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.18419/op...
      Doctoral thesis . 2007
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kaarna, Jesse;

    Ageing population combined with plans of lengthen careers compel both organizations and occupational healthcare system to renew. Sufficient physical fitness is one of the key factors to pursuit this goal which enables workers to continue in the working life. Aim of the study was to clarify association of physical fitness on self- perceived work ability on working aged people by utilizing Laturi Energy Index and short version of Work Ability Index (WAP) questionnaire in a working age population. Study was a sub-study of a larger ALIWO research project. Altogether 197 participants, 39 executives and 158 employees from 39 local companies in different sectors took part to the study. Energy Index result was calculated based on the preliminary information and results in eight subtests including a wellness questionnaire, fitness assessment, and biometric data. Energy Index results are presented in hours and minutes and results can vary from 4-16 hours. The score in the WAP varies from 0-100 points. WAP is created by the Finnish Institute of Occupational Health (Seitsamo 2013) and it is based on international Work Ability Index (Ilmarinen et al. 1997). The average result in Energy Index among all the 197 participants was 10:39 h:min, varying from 4:43 h:min to 15:21h:min. The results did not differ between executives and employers, however female had better Energy Index than male. (p=0.001). The mean in WAP was 83.86 points. Results varied from 39 points to 100 points. Results in WAP did not statistically differ between executives and employees, between genders or between different age groups. However, individuals who reported high physical activity had higher WAP compared to moderate physical activity (p<0,007). In total, there was a positive correlation between Energy Index and WAP (r=0.26, p<0.001). In addition, a significant positive correlation was found between Energy Index and WAP in all of the subgroups: executives, employees, female and male. Energy Index and WAP showed also a positive correlation among those whose work type was sedentary and those who reported their nature of work to be mentally demanding. As a conclusion, this study succeeded in strengthening the association of physical fitness and work ability on cross-sector worker population. All in all, results indicates that both tools Energy Index and WAP are applicable specially workers in different positions for both genders and for mentally demanding and sedentary work types. The statistically significant correlation between Energy Index and WAP indicates that health and functional capacity are significantly related to work ability in occurring now.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Georgoul, Christina; Pana Tronca, Luciano; Chaniotakis, Emmanouil; Kamargiann, Maria;

    Whilst there is research on how Covid-19 impacted travel demand and transport business, little attention has been paid on how Covid-19 has affected transport planning priorities and policy making. Against this background, this paper attempts to shed light on two research questions: a) how transport planning priorities have changed after Covid-19 outbreak; b) How can the planning phases be strengthened to support a more resilient planning environment? To address these questions, an online survey was designed, examining Covid-19 effects on transport planning. The results of the survey revealed that planning objectives were significantly different in the period after Covid-19 outbreak compared to the period before that. Moreover, it was shown that most of the actions adopted to accommodate the prioritized planning objectives were already defined before Covid-19, indicating that the pandemic has acted as an accelerator of specific existing planning objectives.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads20
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    *This record is given in both English and Spanish Dietary recommendations are developed from the best available scientific evidence on the effect of nutrients and food on health. These recommendations take into account that the effect of food depends not only on its nutritional content but also on the matrix in which is ingested, the alterations during the culinary process, the presence of non-nutrient substances, and the synergies that occur between food combinations. In addition, the 2030 Agenda for Sustainable Development and the United Nations Sustainable Development Goals (SDGs) (Moran, 2020) make it clear that a profound change in the way food is produced and consumed must take place in order to increase productivity and sustainability while improving human health. On the other hand, taking into account that Law 17/2011, of July 5, on Food Security and Nutrition, in its article 36 [Strategy of nutrition, physical activity, and prevention of obesity (NAOS)], indicates that nutritional and physical activity targets for the population and those of reduction of the prevalence of obesity will be established, it has been considered appropriate to include in this report an update of the physical activity recommendations published by AESAN (Spanish Agency for Food Safety and Nutrition) in 2015 (AECOSAN, 2015), also aligned with sustainability and the environment, so that the 2030 SDGs can be achieved (Moran, 2020) by promoting physical activity and reducing sedentary behaviour. In view of the above, and in order to establish and be able to provide the population with the most complete and updated information available on healthy and sustainable dietary patterns and on the importance of physical activity, the Scientific Committee of AESAN has been asked for a new report that updates both the dietary recommendations for the Spanish population, considering the environ mental impact of food, as well as recommendations related to physical activity. The Scientific Committee believes that the adoption by the Spanish population of a varied and balanced diet, healthy and sustainable, can improve their health and well-being, while reducing the environmental impact. To this end, it is recommended to consume at least 3 servings/day of vegetables; 2-3 servings/day of fruits; a moderate intake of potatoes and other tubers; 3-6 servings/day of cereals, depending on the energy needs of each person, and not more than 4 servings/day if caloric intake needs to be restricted, prioritising in any case whole grain cereals and wholemeal products; at least 4 servings/week of legumes up to a daily consumption; 3 or more servings/week of nuts, up to a consumption of 1 daily serving, choosing those without added salt, fats or sugars; 3 or more servings/week of fish, prioritising blue fish and species with less environmental impact; up to 4 eggs/week; a maximum consumption of 3 servings/day of dairy products, avoiding those with added sugars and high salt content, although, due to their high environmental impact, it is suggested to reduce the number of daily servings of dairy products if other foods of animal origin are consumed; a maximum of 3 servings/week of meat, prioritising poultry and rabbit meat and minimising the consumption of processed meat; a daily consumption of olive oil, both for cooking and for seasoning, in all main meals; and drinking as much water as necessary, which is considered the primary beverage of a healthy diet. In addition to these recommendations, a number of general considerations and aspects to be taken into account for a sustainable healthy diet have been included. Finally, this report also includes physical activity recommendations aimed at different population groups, according to the different stages of life, considering that physical activity can be integrated into work, sports and recreational activities or travel, as well as in daily and domestic chores, and that increasing the number of daily steps is also a good way to improve the health of all people. ES; PDF; pfefsa@aesan.gob.es

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility44
    visibilityviews44
    downloaddownloads38
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Raeanne Miller; Elena Nikitina; Vilena Valeeva; Ilona Mettiäinen; +10 Authors

    Updated version: September 2018 Why Blue-Action? Faced with a changing climate, businesses, policy makers and local communities need to access reliable weather and climate information to safeguard human health, well-being, economic growth, and environmental sustainability. However, important changes in climate variability and extreme weather events are difficult to pinpoint and account for in existing modelling and forecasting tools. Moreover, many changes in the global climate are linked to the Arctic, where climate change is occurring rapidly, making weather and climate predictions a considerable challenge. Blue-Action is evaluating the >>...read more in the text of the publication

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdukalikova, Anara;

    Electronic health or E-Health is spreading extensively nowadays. E-Health solutions help to achieve the sustainability goal of increasing the expected lifetime while improving the quality of life by providing a constant healthcare monitoring. The focus of this work is on studying the detection of one of the cardiovascular diseases – Atrial Fibrillation (AF) arrhythmia, which has a severe influence on the heart health conditions and could even increase the risk of death. Therefore, it is important to detect it as early as possible. In this thesis we focused on studying various machine learning techniques for AF detection using short single lead ECG recordings. A web-based solution was built as a final prototype, which first simulates the reception of a recorded signal, conducts the preprocessing, makes a prediction of the AF presence, and visualizes the result. For the AF detection the relatively high accuracy score was achieved comparable to the one of the state-of-the-art. The work was based on the investigation of the proposed architectures and the usage of the database of signals from the 2017 PhysioNet/CinC Challenge. However, an additional constraint was introduced to the original problem formulation, since the idea of a future deployment on the resource-limited devices places the restrictions on the complexity of the computations being performed for achieving the prediction. Therefore, this constraint was considered during the development phase of the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2018
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2018
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mwakangale, Jacqueline C.D.;

    Water treatment technologies are seen as the best alternative to be considered for adoption in developing countries where access to portable water supply that is free of pathogens is yet a challenge. This study intended to assess impact brought forth by a project, which employed a water treatment technology in rural settings of Morogoro Region in Tanzania. The project used solar photovoltaic panels to trap solar energy, converted to mechanical power to treat water with the help of sterilization ultraviolet membrane. A comparative analysis was used as an assessment framework to study impacts of the project with respect to the quality of approach used during the project life cycle. Determinants of impacts took into account social, economic and environment aspects whereas determinants of the quality of approaches taken considered six elements which are: character of participation; success, nature of institution and capacity building efforts; diversity, multiplicity and adaptability of ideas promoted by the project; accounting for heterogeneity and dynamism; understanding and use of local knowledge, skills, initiative and constraints; and recognizing the influence of external conditions, markets and policies. Results indicate that the project has intervened positively in the provision of safe portable water to the selected project sites. The quality of approaches taken had profound effect to the delivered impacts. These impacts are seen in the reduced recurring outburst of water-borne diseases such as typhoid and diarrhea. Another impact observed is in the downturn to a certain extent in the use of wood fuel for boiling. Reduced recurring of waterborne diseases has boosted pupils’ attendance at school. Furthermore, the study argues that adoption of water treatment technologies in rural settings has a potential to conserve the environment, improve health of people through the provision of safe portable water, which ultimately contribute to rural development. However, sustainability of the installed purification systems is in question if it will continue to function over the long run. Observed barriers are lack of solid economic means for sustaining operations and maintenances.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roume, Hugo;

    Biological wastewater treatment is based on the use of microorganisms capable of intense metabolic activity that results in the removal of a large proportion of organic and inorganic contaminants. Given copious amounts of energy-dense organic molecules such as lipids accumulated by the microbial biomass, chemical energy may be directly harnessed from this for biofuel production. Here, lipid accumulating organism (LAO)-enriched microbial communities were studied using a molecular eco-systems biology approach. This involved the development of necessary methodologies including a new comprehensive biomolecular extraction method, yielding high-quality DNA, RNA, proteins and metabolites, as well as bioinformatic approaches for integrating and analysing the derived high-throughput genomic, transcriptomic, proteomic and metabolomic data. At the inception of the project, a full-scale wastewater treatment plant (WWTP) system with a strong presence of LAOs especially during winter months, i.e. the Schifflange WWTP (Esch-sur-Alzette, Luxembourg), was identified and selected for further study. 16S rRNA amplicon sequencing highlighted the presence of ubiquitous lipid accumulating bacteria closely related to Candidatus Microthrix parvicella which increase in abundance from autumn to winter over other highly abundant community members belonging to Alkanindiges spp. and Acinetobacter spp. In order to elucidate compositional, genetic and functional differences between autumn and winter LAO communities, a comparative integrative omic analysis was carried out on rationally selected autumn and winter LAO community samples. The results from metabolomic/lipidomic analyses between intra- and extracellular compartments support previous models of uptake of unprocessed long chain fatty acids (LCFAs) from the wastewater environment and their storage as triacyglycerols within LAOs. Furthermore, a tailored computational framework for the integration of multi-omic datasets into reconstructed community-wide metabolic networks and models was developed. The resulting networks provide overviews of functional capacity of the sampled LAO communities by incorporating gene copy numbers, transcript levels and protein frequency across the two studied environmental conditions. The identification of genes overexpressed, strongly associated with a specific season and/or possessing a high clustering coefficient suggests the existence of keystone genes, analogous to keystone species in species interaction networks. Examples of such keystone genes in the context of the LAO communities include genes coding for proteins involved in nitrogen and glycerolipid metabolism. The existence of such keystone genes opens up exciting possibilities for prediction and control strategies of microbial communities at the dawn of the field of Eco-Systems Biology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brink, Paul J. Van den; Boxall, Alistair B.A.; Maltby, Lorraine; Brooks, Bryan W.; +32 Authors

    The United Nations’ Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. peerReviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Obijaju, Peter Paul;

    Inadequate final disposal of municipal solid waste (MSW) is associated with significant greenhouse gas (GHG) emission, environmental, health and safety issues, space consumption, public health and developmental issues in general. The environmental impact of waste is mostly felt in developing countries, inadequate waste management and treatment solution, inadequate policies and outdated practices are some of the factors leading to the significantly high final disposal of waste in dumps in developing countries. Brazil and other developing countries are changing the status quo by adopting polices that will adequately address this problem of inadequate waste management and disposal. Life cycle analysis (LCA) identifies the potential environmental impact of a product though environmental impact assessment, International Organization for Standardization (ISO) created the ISO 14040 and ISO 14044 to serve as principle guidelines for conducting LCA. Various waste treatment solution was applied to identify the waste management solution with the least Global warming potential (GWP) for treating the MSW generated from the city of Rio de Janerio, while reducing significantly final waste disposed in landfill.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2016
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2016
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Solak, Nuri;

    Strontium- and magnesium-doped lanthanum gallate (LSGM) perovskite-type compounds and doped ceria-based materials have recently been considered the most promising solid electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. While nickel metal is commonly used for the fabrication of cermet-type anodes, the rare earth nickelates, such as Sr-doped La2NiO4 (LSN), are recently developed high-performance cathode materials. For successful implementation in IT-SOFC, it is therefore essential to know the phase equilibria and thermodynamic properties for systems representing the solid electrolyte and electrode materials across their various combinations. This thesis aims to determine the phase equilibria and the thermodynamics of the relevant phases in the systems La-Sr-Ga-Mg-Ni-O, Ce-Gd-Sr-Ni-O, and Ce-Gd-La-Ni-O. Subsystems of these multi-component systems were thermodynamically modeled, based on the available literature and experimental data obtained from this work. The experimental studies were designed based on the calculated phase diagrams. A minimum number of compositions was chosen strategically to obtain a preliminary prediction of the phases in equilibrium in each constituent subsystem. Finally, the experimental and computational results were used to predict the compatibility/reactivity of IT-SOFC components under fabrication and/or operation conditions. Various experimental techniques were employed for determination of the phase equilibria such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD), Differential Scanning and Adiabatic Calorimetry, and Mass Spectrometry (MS). The CALPHAD-method (CALculation of PHAse Diagrams) and THERMOCALC software were used to obtain self-consistent sets of Gibbs energy functions. The following systems were investigated experimentally: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, La-Sr-Ga-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O, Ce-Gd-Ni-O, Ce-Gd-Sr-O, Ce-Sr-Ni-O, Gd-Sr-Ni-O, Ce-Gd-Sr-Ni-O and Ce-Gd-La-Ni-O. Using results from this experimental work and data from the literature, the following systems were thermodynamically modeled: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O and Gd-Sr-O. The systems, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, and Ce-Gd-Ni-O were extrapolated using parameters optimized from the constituent lower-order systems. In the La-Ni-O system, the enthalpy of formation, entropy and heat capacity of La3Ni2O7, La4Ni3O10, and LaNiO3, were determined experimentally for the first time using equilibration with the gas phase, adiabatic calorimetry and differential scanning calorimetry. In the La-Ga-Ni-O, La-Sr-Ni-O and La-Mg-Ni-O systems, extended solid solutions of La(Ga,Ni)O3, La2(Ni,Ga)O4, La4(Ni,Ga)3O10, (La,Sr)2NiO4, and La2(Ni,Mg)O4 were found, and the limits of their homogeneity ranges have been established for the first time. In addition, the compound LaNiGa11O19, with a magnetoplumbite-type structure was identified, which has not been reported in the literature to date. In the La-Ga-Mg-Ni-O system, the temperature dependence of the quasi-quaternary homogeneity range of La(Ga,Mg,Ni)O3 was determined. In the La-Sr-Ga-Ni-O system, a reaction was observed between LaGaO3 and LaSrNiO4 that formed a melilite-type La1-xSr1+xGa3O7+z, LaGaSrO4 and NiO phase. Similar reaction mechanisms were observed in the La-Sr-Ga-Mg-Ni-O system. Experiments in the Ce-Ni-O system were conducted in air as well as in a reducing atmosphere. It has been found that NiO does not react with CeO2. In the Ce-Sr-O system, the entropy and heat capacity of Sr2CeO4 were experimentally determined for the first time. In the Gd-Ni-O system a eutectic reaction was observed (liquid <=> B-Gd2O3 + NiO). The Gd-Sr-O system was modeled thermodynamically based on data from the literature and the experimentally determined homogeneity range on the Gd2O3-rich site. In the Ce-Sr-Ni-O system the solid solution of (Ce,Sr)2NiO4-z was determined. No reaction between NiO and SrCeO3 / Sr2CeO4 was found. Similarly, in the Ce-Gd-Ni-O system, no reaction was observed between (Ce,Gd)O2-z and NiO. In contrast, solid solutions of Sr(Ce,Gd)O3, Sr2(Ce,Gd)O4 and (Gd,Sr)2(Sr,Ce)O4 were determined in the Ce-Gd-Sr-O system. Also, an extended solid solution of (Gd,Sr)2NiO4 was found in the Gd-Sr-Ni-O system that does not exist in the quasi-binary sections, but is stable in higher-order systems only because a solid solution is formed. It has been also found that there is no NiO solubility in the Gd2SrO4 phase. It could be concluded that doped ceria-based materials are chemically compatible with NiO during conditions typical for both the fabrication and the operation of IT-SOFC’s, whereas LSGM-type electrolytes react with NiO under the fuel cell fabrication conditions. Moreover, although La2NiO4 is a high-performance cathode, it cannot be used in combination with LSGM- or CGO-type electrolytes, due to its reactivity with both of these materials under fabrication conditions. Strontium- und Magnesium- dotierte Lanthangallat Verbindungen des Perowskit-Typs und dotierte Ceroxid-basierte Materialien (DC) wurden kürzlich als hoffnungsvolle Festelektrolyte für die Festoxidbrennstoffzelle bei intermediärer Temperatur (IT-SOFC) betrachtet. Normalerweise wird metallisches Nickel zur Herstellung der Komposit-Anode verwendet, wobei neuerdings die Nickelate von Seltenerdmetallen, wie z.B. Sr-dotierte La2NiO4 (LSN), zur Hochleistungskathode entwickelt werden. Um IT-SOFC erfolgreich herzustellen und auszunutzen sind die Kenntnisse der Phasengleichgewichten und Thermodynamik für Systeme notwendig, welche die Kathoden, Festelektrolyt, Anoden und ihre mögliche Kombinationen repräsentieren. Ziel der Arbeit ist die Phasengleichgewichten und Thermodynamik von La-Sr-Ga-Mg-Ni-O, Ce-Gd-Sr-Ni-O und Ce-Gd-La-Ni-O Systeme zu bestimmen. Die Subsysteme wurden thermodynamisch berechnet auf der Basis von Literaturdaten, während die experimentelle Untersuchungen durch berechnete Phasendiagramm entworfen wurden, wodurch weniger Aufwand benötigt wurde. Schließlich wurden die experimentellen und rechnerischen Ergebnisse verwendet, um die Kompatibilität und Reaktivität von IT-SOFC Komponenten unter Herstellung- und Arbeitsbedingungen vorauszusagen. Für die experimentelle Bestimung der Phasengleichgewichte der Systeme wurden verschiedene Untersuchungsmethoden verwendet, wie z.B. Rasterelektronmikroskopie (REM), Energiedispersive Röntgenspektroskopie (EDX), Dynamische Differenzkalorimetrie und Thermogravimetrie. Die CALPHAD-Methode (Calculation of PHAse Diagrams) mit THERMOCALC Software wurde auch verwendet, um eine selbstkonsequente Reihe von freien Enthalpie Funktionen zu bekommen. Die folgenden Systeme wurden experimentell untersucht: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, La-Sr-Ga-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O, Ce-Gd-Ni-O, Ce-Gd-Sr-O, Ce-Sr-Ni-O, Gd-Sr-Ni-O, Ce-Gd-Sr-Ni-O, Ce-Gd-La-Ni-O. Durch erhaltenen Ergebnisse und Literaturdaten wurden thermodynamische Modelle für die folgenden Systemen gestellt: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O. Mit optimierte Parameter von Systemen niedrigerer Ordnung wurden die Systeme La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, und Ce-Gd-Ni-O extrapoliert. Im La-Ni-O System wurden die Bildungsenthalpie, Entropie und Wärmekapazität von La3Ni2O7, La4Ni3O10 und LaNiO3 durch Gleichgewicht mit Gasphase, adiabatische Kalorimetrie und Dynamische Differenzkalorimetrie experimentell bestimmt. In den La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O Systeme wurden erweiterten Mischkristalle La(Ga,Ni)O3, La2(Ni,Ga)O4, La4(Ni,Ga)3O10, (La,Sr)2NiO4 und La2(Ni,Mg)O4 gefunden und ihre Homogenitätsbereichen bestimmt. Zusätzlich wurden die Magnetoplumbite-Typ Verbindung LaNiGa11O19 gefunden, die bislang noch nicht in der Literaturen bekannt war. Im La-Ga-Mg-Ni-O System wurde die Temperaturabhängigkeit von La(Ga,Mg,Ni)O3 Homogenitätsbereich untersucht. Im La-Sr-Ga-Ni-O System wurde eine Reaktion zwischen LaGaO3 und LaSrNiO4 untersucht, die Melilite-Typ La1-xSr1+xGa3O7+z, LaGaSrO4 und NiO bildet. Der gleiche Reaktionsmechanismus wurde auch im La-Sr-Ga-Mg-Ni-O System beobachtet. Die Experimente für Ce-Ni-O System wurden sowohl an Luft als auch im Reduktions- Atmosphäre durchgeführt. Es wurde gefunden, dass NiO nicht mit CeO2 reagiert. Für Ce-Sr-O System wurden zuerst die Entropie und Wärmekapazität von Sr2CeO4 experimentell bestimmt. Für Gd-Ni-O System wurde eine eutektische Reaktion (Schmelze <=> B-Gd2O3 + NiO) untersucht. Für das Gd-Sr-O System wurde ein thermodynamisches Modell aus Literaturdaten aufgestellt und auf Gd2O3-reichen Seite die Homogenitätsbereiche experimentell untersucht. Im Ce-Sr-Ni-O System wurde auf SrO-reichen Seite das Mischkristall (Ce,Sr)2NiO4-z untersucht. Es wurde festgestellt, dass keine Reaktion zwischen NiO und SrCeO3 / Sr2CeO4 stattgefunden hat. Im Ce-Gd-Ni-O System wurde keine Reaktion zwischen (Ce,Gd)O2-z und NiO gefunden. Im Ce-Gd-Sr-O System wurden Mischkristalle Sr(Ce,Gd)O3, Sr2(Ce,Gd)O4 und (Gd,Sr)2(Sr,Ce)O4 untersucht. Im Gd-Sr-Ni-O System wurde ein Mischkristall (Gd,Sr)2NiO4 untersucht, der in quasi-binären Schnitten nicht existiert, aber im System höherer Ordnung stabilisiert wird. Es wurde auch gefunden, dass in die Gd2SrO4 Phase keine NiO gelöst wird. Daraus kann man schliessen, dass dotierte Ceroxide (DC) basierte Materialien mit NiO während der Herstellung und Betrieb von IT-SOFC chemisch kompatibel sind, wobei LSGM Elektrolyte unter Herstellungsbedingungen in der Zelle mit NiO reagieren. Obwohl La2NiO4 eine Hochleistungskathode ist, lässt es sich nicht in Kombination mit LSGM oder DC benutzen, weil es mit den beiden Materialien unter Herstellungsbedingungen in der Zelle miteinander reagiert.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.18419/op...
    Doctoral thesis . 2007
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.18419/op...
      Doctoral thesis . 2007
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kaarna, Jesse;

    Ageing population combined with plans of lengthen careers compel both organizations and occupational healthcare system to renew. Sufficient physical fitness is one of the key factors to pursuit this goal which enables workers to continue in the working life. Aim of the study was to clarify association of physical fitness on self- perceived work ability on working aged people by utilizing Laturi Energy Index and short version of Work Ability Index (WAP) questionnaire in a working age population. Study was a sub-study of a larger ALIWO research project. Altogether 197 participants, 39 executives and 158 employees from 39 local companies in different sectors took part to the study. Energy Index result was calculated based on the preliminary information and results in eight subtests including a wellness questionnaire, fitness assessment, and biometric data. Energy Index results are presented in hours and minutes and results can vary from 4-16 hours. The score in the WAP varies from 0-100 points. WAP is created by the Finnish Institute of Occupational Health (Seitsamo 2013) and it is based on international Work Ability Index (Ilmarinen et al. 1997). The average result in Energy Index among all the 197 participants was 10:39 h:min, varying from 4:43 h:min to 15:21h:min. The results did not differ between executives and employers, however female had better Energy Index than male. (p=0.001). The mean in WAP was 83.86 points. Results varied from 39 points to 100 points. Results in WAP did not statistically differ between executives and employees, between genders or between different age groups. However, individuals who reported high physical activity had higher WAP compared to moderate physical activity (p<0,007). In total, there was a positive correlation between Energy Index and WAP (r=0.26, p<0.001). In addition, a significant positive correlation was found between Energy Index and WAP in all of the subgroups: executives, employees, female and male. Energy Index and WAP showed also a positive correlation among those whose work type was sedentary and those who reported their nature of work to be mentally demanding. As a conclusion, this study succeeded in strengthening the association of physical fitness and work ability on cross-sector worker population. All in all, results indicates that both tools Energy Index and WAP are applicable specially workers in different positions for both genders and for mentally demanding and sedentary work types. The statistically significant correlation between Energy Index and WAP indicates that health and functional capacity are significantly related to work ability in occurring now.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Georgoul, Christina; Pana Tronca, Luciano; Chaniotakis, Emmanouil; Kamargiann, Maria;

    Whilst there is research on how Covid-19 impacted travel demand and transport business, little attention has been paid on how Covid-19 has affected transport planning priorities and policy making. Against this background, this paper attempts to shed light on two research questions: a) how transport planning priorities have changed after Covid-19 outbreak; b) How can the planning phases be strengthened to support a more resilient planning environment? To address these questions, an online survey was designed, examining Covid-19 effects on transport planning. The results of the survey revealed that planning objectives were significantly different in the period after Covid-19 outbreak compared to the period before that. Moreover, it was shown that most of the actions adopted to accommodate the prioritized planning objectives were already defined before Covid-19, indicating that the pandemic has acted as an accelerator of specific existing planning objectives.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads20
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    *This record is given in both English and Spanish Dietary recommendations are developed from the best available scientific evidence on the effect of nutrients and food on health. These recommendations take into account that the effect of food depends not only on its nutritional content but also on the matrix in which is ingested, the alterations during the culinary process, the presence of non-nutrient substances, and the synergies that occur between food combinations. In addition, the 2030 Agenda for Sustainable Development and the United Nations Sustainable Development Goals (SDGs) (Moran, 2020) make it clear that a profound change in the way food is produced and consumed must take place in order to increase productivity and sustainability while improving human health. On the other hand, taking into account that Law 17/2011, of July 5, on Food Security and Nutrition, in its article 36 [Strategy of nutrition, physical activity, and prevention of obesity (NAOS)], indicates that nutritional and physical activity targets for the population and those of reduction of the prevalence of obesity will be established, it has been considered appropriate to include in this report an update of the physical activity recommendations published by AESAN (Spanish Agency for Food Safety and Nutrition) in 2015 (AECOSAN, 2015), also aligned with sustainability and the environment, so that the 2030 SDGs can be achieved (Moran, 2020) by promoting physical activity and reducing sedentary behaviour. In view of the above, and in order to establish and be able to provide the population with the most complete and updated information available on healthy and sustainable dietary patterns and on the importance of physical activity, the Scientific Committee of AESAN has been asked for a new report that updates both the dietary recommendations for the Spanish population, considering the environ mental impact of food, as well as recommendations related to physical activity. The Scientific Committee believes that the adoption by the Spanish population of a varied and balanced diet, healthy and sustainable, can improve their health and well-being, while reducing the environmental impact. To this end, it is recommended to consume at least 3 servings/day of vegetables; 2-3 servings/day of fruits; a moderate intake of potatoes and other tubers; 3-6 servings/day of cereals, depending on the energy needs of each person, and not more than 4 servings/day if caloric intake needs to be restricted, prioritising in any case whole grain cereals and wholemeal products; at least 4 servings/week of legumes up to a daily consumption; 3 or more servings/week of nuts, up to a consumption of 1 daily serving, choosing those without added salt, fats or sugars; 3 or more servings/week of fish, prioritising blue fish and species with less environmental impact; up to 4 eggs/week; a maximum consumption of 3 servings/day of dairy products, avoiding those with added sugars and high salt content, although, due to their high environmental impact, it is suggested to reduce the number of daily servings of dairy products if other foods of animal origin are consumed; a maximum of 3 servings/week of meat, prioritising poultry and rabbit meat and minimising the consumption of processed meat; a daily consumption of olive oil, both for cooking and for seasoning, in all main meals; and drinking as much water as necessary, which is considered the primary beverage of a healthy diet. In addition to these recommendations, a number of general considerations and aspects to be taken into account for a sustainable healthy diet have been included. Finally, this report also includes physical activity recommendations aimed at different population groups, according to the different stages of life, considering that physical activity can be integrated into work, sports and recreational activities or travel, as well as in daily and domestic chores, and that increasing the number of daily steps is also a good way to improve the health of all people. ES; PDF; pfefsa@aesan.gob.es

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility44
    visibilityviews44
    downloaddownloads38
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Raeanne Miller; Elena Nikitina; Vilena Valeeva; Ilona Mettiäinen; +10 Authors

    Updated version: September 2018 Why Blue-Action? Faced with a changing climate, businesses, policy makers and local communities need to access reliable weather and climate information to safeguard human health, well-being, economic growth, and environmental sustainability. However, important changes in climate variability and extreme weather events are difficult to pinpoint and account for in existing modelling and forecasting tools. Moreover, many changes in the global climate are linked to the Arctic, where climate change is occurring rapidly, making weather and climate predictions a considerable challenge. Blue-Action is evaluating the >>...read more in the text of the publication

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Report . 2018
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Report . 2018
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph