- home
- Search
Filters
Clear All- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- US
- DE
- Spanish
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- US
- DE
- Spanish
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:Zenodo Funded by:EC | AMADEUSEC| AMADEUSA.Datas; C. del Cañizo; A. Ramos; A. B. Cristobal; N. Nikolopoul?s; A. Nikolopoul?s; M. Zeneli; N. Sobczak; W. Polkowski; M. Tangstad; J. Safarian; D. Trucchi; A. Bellucci; M. Girolami; R. Marx; D. Bestenlehner; S. Lang; A. Vitulano; G. Sabbatella; A. Martí;AMADEUS es un proyecto europeo que investiga materiales y dispositivos de estado sólido para almacenar energía a muy alta temperatura. Usando aleados de silicio como materiales de cambio de fase se alcanzan calores latentes superiores a 1000 kWh/m3, propiciando la obtención de altísimas densidades energéticas. Dichos aleados suponen temperaturas de almacenamiento por encima de los 1000 ºC, muy por encima de las de los sistemas actuales de acumulación térmica. El artículo describe las actividades del proyecto y sus primeros resultados, explicando los principales retos de este nuevo sistema que combina la acumulación de energía en forma de calor en silicio fundido con dispositivos de estado sólido termiónicos y termofotovoltaicos para la posterior conversión en electricidad. AMADEUS is a H2020 project that researches on materials and solid-state devices for very high temperature energy storage and conversion. By exploring silicon-based alloys as new phase change materials (PCMs), latent heat higher than 1000 kWh/m3 is achievable, which implies a very high energy density. In addition, silicon-based PCMs lead to storage temperatures well beyond 1000 ºC, well beyond that of current state-of-the-art thermal energy storage (TES). This paper describes the project R&D activities and first results, and comments on challenges towards a new kind of systems combining latent heat energy storage in molten silicon with thermionic and thermophotovoltaic solid state heat-to-power conversion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2552277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2552277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2013Publisher:Barcelona Centre for International Affairs (CIDOB) Authors: Paul Isbell;Sweeping changes are beginning to transform energy scenarios around the world. The gas revolution, a renaissance in petroleum technology and exploration, and a chaotic but powerful movement toward the goal of low-carbon economies are three of the principal energy trends currently interacting with structural changes in the geo-economics of the Atlantic world to present new perspectives and opportunitiesfor the diverse actors in the ‘Atlantic Basin’. This article explores how changes in the energy landscape are contributing to a reassessment of the strategic horizon. The potential impacts of the shale revolution, deep-offshore oil, biofuels and other modern renewable energies on the geopolitics of the Atlantic Basin will be assessed, and the hypothesis that an Atlantic Basin energy system is now taking shape will be evaluated, along with an analysis of anticipated impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::aff1333fcea46075787e2b5db7335adb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::aff1333fcea46075787e2b5db7335adb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2010Publisher:Unknown Authors: Colon Guasp, Wilfredo; Colon Guasp, Wilfredo;The amount of energy and food consumed in Puerto Rico is more indicative of a developed nation than one than is underdeveloped. All the energy consumed in Puerto Rico is from fossil fuels, while the agricultural sector marginally provides the needs of the consumer. In addition, the animal production sectors rely exclusively on imported feedstock for the preparation of feeds. There is a potential to develop an ethanol industry based initially on sugarcane, as the main feedstock and then turn to biomass from energy cane and or organic solid waste in the future. In order to move to the second generation of ethanol production, the cellulosic ethanol industry has to become economically viable. A limiting factor in the use of sugarcane is that only 40,000 ha are currently available to grow this crop. Potentially, Puerto Rico can produce 200 million liters of ethanol on this area which could substitute 5% of the gasoline that was consumed in 2007. On the other hand, biomass could be obtained from bagasse, energy cane, and from 1.3 metric tons of organic solid waste (food and yard waste) produced annually on the island. This strategy can provide a relief to decreasing the amounts of organic solid waste that end up in the landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.56325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.56325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:Zenodo Funded by:EC | AMADEUSEC| AMADEUSA.Datas; C. del Cañizo; A. Ramos; A. B. Cristobal; N. Nikolopoul?s; A. Nikolopoul?s; M. Zeneli; N. Sobczak; W. Polkowski; M. Tangstad; J. Safarian; D. Trucchi; A. Bellucci; M. Girolami; R. Marx; D. Bestenlehner; S. Lang; A. Vitulano; G. Sabbatella; A. Martí;AMADEUS es un proyecto europeo que investiga materiales y dispositivos de estado sólido para almacenar energía a muy alta temperatura. Usando aleados de silicio como materiales de cambio de fase se alcanzan calores latentes superiores a 1000 kWh/m3, propiciando la obtención de altísimas densidades energéticas. Dichos aleados suponen temperaturas de almacenamiento por encima de los 1000 ºC, muy por encima de las de los sistemas actuales de acumulación térmica. El artículo describe las actividades del proyecto y sus primeros resultados, explicando los principales retos de este nuevo sistema que combina la acumulación de energía en forma de calor en silicio fundido con dispositivos de estado sólido termiónicos y termofotovoltaicos para la posterior conversión en electricidad. AMADEUS is a H2020 project that researches on materials and solid-state devices for very high temperature energy storage and conversion. By exploring silicon-based alloys as new phase change materials (PCMs), latent heat higher than 1000 kWh/m3 is achievable, which implies a very high energy density. In addition, silicon-based PCMs lead to storage temperatures well beyond 1000 ºC, well beyond that of current state-of-the-art thermal energy storage (TES). This paper describes the project R&D activities and first results, and comments on challenges towards a new kind of systems combining latent heat energy storage in molten silicon with thermionic and thermophotovoltaic solid state heat-to-power conversion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2552277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2552277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2013Publisher:Barcelona Centre for International Affairs (CIDOB) Authors: Paul Isbell;Sweeping changes are beginning to transform energy scenarios around the world. The gas revolution, a renaissance in petroleum technology and exploration, and a chaotic but powerful movement toward the goal of low-carbon economies are three of the principal energy trends currently interacting with structural changes in the geo-economics of the Atlantic world to present new perspectives and opportunitiesfor the diverse actors in the ‘Atlantic Basin’. This article explores how changes in the energy landscape are contributing to a reassessment of the strategic horizon. The potential impacts of the shale revolution, deep-offshore oil, biofuels and other modern renewable energies on the geopolitics of the Atlantic Basin will be assessed, and the hypothesis that an Atlantic Basin energy system is now taking shape will be evaluated, along with an analysis of anticipated impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::aff1333fcea46075787e2b5db7335adb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::aff1333fcea46075787e2b5db7335adb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2010Publisher:Unknown Authors: Colon Guasp, Wilfredo; Colon Guasp, Wilfredo;The amount of energy and food consumed in Puerto Rico is more indicative of a developed nation than one than is underdeveloped. All the energy consumed in Puerto Rico is from fossil fuels, while the agricultural sector marginally provides the needs of the consumer. In addition, the animal production sectors rely exclusively on imported feedstock for the preparation of feeds. There is a potential to develop an ethanol industry based initially on sugarcane, as the main feedstock and then turn to biomass from energy cane and or organic solid waste in the future. In order to move to the second generation of ethanol production, the cellulosic ethanol industry has to become economically viable. A limiting factor in the use of sugarcane is that only 40,000 ha are currently available to grow this crop. Potentially, Puerto Rico can produce 200 million liters of ethanol on this area which could substitute 5% of the gasoline that was consumed in 2007. On the other hand, biomass could be obtained from bagasse, energy cane, and from 1.3 metric tons of organic solid waste (food and yard waste) produced annually on the island. This strategy can provide a relief to decreasing the amounts of organic solid waste that end up in the landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.56325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.56325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu