- home
- Search
- Energy Research
- health sciences
- 14. Life underwater
- GB
- FR
- Energy Research
- health sciences
- 14. Life underwater
- GB
- FR
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Edith Garot; Thierry Joët; Marie‐Christine Combes; Dany Severac; Philippe Lashermes;doi: 10.1111/nph.16052
pmid: 31291469
Summary Past climatic fluctuations have played a major role in shaping the current plant biodiversity. Although harbouring an exceptional biota, oceanic islands have received little attention in studies on species demographic history and past vegetation patterns. We investigated the impact of past climatic changes on the effective population size of a tree (Coffea mauritiana) that is endemic to Reunion Island, located in the south‐western Indian Ocean (SWIO). Demographic changes were inferred using summary statistics calculated from genomic data. Using ecological niche modelling and the current distribution of genetic diversity, the paleodistribution of the species was also assessed. A reduction in the effective population size of C. mauritiana during the last glaciation maximum was inferred. The distribution of the species was reduced on the western side of the island, due to low rainfall. It appeared that a major reduction in rainfall and a slight temperature decrease prevailed in the SWIO. Our findings indicated that analyses on the current patterns of intraspecific genetic variations can efficiently contribute to past climatic changes characterisation in remote islands. Identifying area with higher resilience in oceanic islands could provide guidance in forest management and conservation faced to the global climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Oxford University Press (OUP) Mônica M. C. Muelbert; M. de Bruyn; Claudio Campagna; L. J. Corrigan; A. R. Hoelzel; Marthán N Bester; L. F. Chauke; L. F. Chauke; Armanda D.S. Bastos; Anna Fabiani; Anna Fabiani; Clive R. McMahon;doi: 10.1111/jeb.12870
pmid: 27012933
AbstractUnderstanding observed patterns of connectivity requires an understanding of the evolutionary processes that determine genetic structure among populations, with the most common models being associated with isolation by distance, allopatry or vicariance. Pinnipeds are annual breeders with the capacity for extensive range overlap during seasonal migrations, establishing the potential for the evolution of isolation by distance. Here, we assess the pattern of differentiation among six breeding colonies of the southern elephant seal, Mirounga leonina, based on mtDNA and 15 neutral microsatellite DNA markers, and consider measures of their demography and connectivity. We show that all breeding colonies are genetically divergent and that connectivity in this highly mobile pinniped is not strongly associated with geographic distance, but more likely linked to Holocene climate change and demographic processes. Estimates of divergence times between populations were all after the last glacial maximum, and there was evidence for directional migration in a clockwise pattern (with the prevailing current) around the Antarctic. We discuss the mechanisms by which climate change may have contributed to the contemporary genetic structure of southern elephant seal populations and the broader implications.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, AustraliaPublisher:Inter-Research Science Center Andrew H. Baird; Joshua S. Madin; Kyle J. A. Zawada; Maria Dornelas; Sean R. Connolly; Tom C. L. Bridge; Tom C. L. Bridge;doi: 10.3354/meps12735
handle: 10023/18606
Coral reefs are being subjected to an increase in the frequency and intensity of disturbance, such as bleaching and cyclones, and it is important to document the effects of such disturbance on reef coral assemblages. Between March 2014 and May 2017, the reefs of Lizard Island in the northern section of the Great Barrier Reef were affected by 4 consecutive disturbances: severe tropical cyclones Ita and Nathan in 2014 and 2015, and mass bleaching events in 2016 and 2017. Loss of coral cover following the cyclones was patchy and dependent on the direction of the waves generated. In contrast, loss of cover following bleaching was much more uniform. Overall, coral cover declined 5-fold from 36% pre-cyclone Ita to 7% post-bleaching in 2017, while mean species richness dropped from 10 to 4 species per transect. The spatial scale and magnitude of the loss of coral cover in the region suggests that it will be many years before these reefs recover.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.3354/meps12735Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 377 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.3354/meps12735Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:The Royal Society Funded by:EC | BioCHANGEEC| BioCHANGEAuthors: Isaac Trindade-Santos; Faye Moyes; Anne E. Magurran;Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 352 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Nov 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Beyer, Robert M; Manica, Andrea;pmid: 33159054
pmc: PMC7648644
AbstractSpecies’ vulnerability to extinction is strongly impacted by their geographical range size. Formulating effective conservation strategies therefore requires a better understanding of how the ranges of the world’s species have changed in the past, and how they will change under alternative future scenarios. Here, we use reconstructions of global land use and biomes since 1700, and 16 possible climatic and socio-economic scenarios until the year 2100, to map the habitat ranges of 16,919 mammal, bird, and amphibian species through time. We estimate that species have lost an average of 18% of their natural habitat range sizes thus far, and may lose up to 23% by 2100. Our data reveal that range losses have been increasing disproportionately in relation to the area of destroyed habitat, driven by a long-term increase of land use in tropical biodiversity hotspots. The outcomes of different future climate and land use trajectories for global habitat ranges vary drastically, providing important quantitative evidence for conservation planners and policy makers of the costs and benefits of alternative pathways for the future of global biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSERC, NSF | SGER: Development of Equi..., NSF | Intestinal Bicarbonate Se... +2 projectsNSERC ,NSF| SGER: Development of Equipement and Methodology for Simultaneous Measurements of Epithelial Transport and Oxygen Consumption ,NSF| Intestinal Bicarbonate Secretion in Marine Teleost Fish ,UKRI| Novel driving forces for water transport & osmoregulation: carbonate precipitation and osmotic coefficients ,NSF| Intestinal Bicarbonate Secretion, Osmoregulation and Acid-Base Balance in Marine FishJosi R. Taylor; Frank J. Millero; Villy Christensen; Patrick J. Walsh; Patrick J. Walsh; Simon Jennings; Martin Grosell; Rod W. Wilson;pmid: 19150840
Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.
Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Norway, Netherlands, Spain, France, Spain, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Bastien Mérigot; Romain Frelat; Iça Barri; Feriha Tserkova; Jason Conner; Daniela V. Yepsen; Richard L. O'Driscoll; Laurene Pecuchet; Margrete Emblemsvåg; Helle Siegstad; James T. Thorson; Ingrid Spies; Alexander Arkhipkin; Jorge E. Ramos; Richard J. Bell; Luis A. Cubillos; Heino O. Fock; Malin L. Pinsky; Saïkou Oumar Kidé; Menachem Goren; Laurène Mérillet; Laurène Mérillet; Manuel Hidalgo; Aurore Maureaud; Arnaud Auber; Vladimir Kulik; Jón Sólmundsson; Cecilia A. O'Leary; Matthew McLean; Ya’arit Levitt-Barmats; Dori Edelist; Jacqueline Palacios León; Félix Massiot-Granier; Kevin D. Friedland; Itai van Rijn; Kofi Amador; Hamet Diaw Diadhiou; Esther Beukhof; Petur Steingrund; Henrik Gislason; Philippe Ziegler; Wahid Refes; Martin Lindegren; Jérôme Guitton; Ignacio Sobrino; Ian Knuckey; Beyah Meissa; Billy Ernst; Evangelos Tzanatos; Vesselina Mihneva; Marcos Llope; Tarek Hattab; Elitsa Petrova; Jonathan Belmaker; Didier Gascuel; Camilo B. García; Mohamed Lamine Camara; Nir Stern; G. Tserpes; Didier Jouffre; Tracey P. Fairweather; Paraskevas Vasilakopoulos; Matt Koopman; Francis K. E. Nunoo; Fabrice Stephenson; Oren Sonin; Paul A.M. van Zwieten; Hicham Masski; Nancy L. Shackell; Esther Román-Marcote; Mariano Koen-Alonso; Junghwa Choi; Sean C. Anderson; Helle Torp Christensen; Johannes N. Kathena; Renato Guevara-Carrasco;AbstractMarine biota is redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. We further found that single surveys do not cover the full range of the main commercial demersal fish species and that an average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with vector autoregressive spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 24 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Future-Proofing the Susta..., UKRI | Effects of warming on rec...UKRI| Future-Proofing the Sustainability of the MRC High Throughput Sequencing Hub in Scotland ,UKRI| Effects of warming on recruitment and marine benthic community development in AntarcticaMelody S. Clark; Gail V. Ashton; Leyre Villota Nieva; Leyre Villota Nieva; Andrew J. Davies; Lloyd S. Peck; Joseph I. Hoffman; Frances Turner; Urmi Trivedi;AbstractMarine encrusting communities play vital roles in benthic ecosystems and have major economic implications with regards to biofouling. However, their ability to persist under projected warming scenarios remains poorly understood and is difficult to study under realistic conditions. Here, using heated settlement panel technologies, we show that after 18 months Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient temperatures. There is significant up-regulation of the cellular stress response in warmed animals, their upper lethal temperatures decline with increasing ambient temperature and population genetic analyses show little evidence of differential survival of genotypes with treatment. By contrast, biofilm bacterial communities show no significant differences in community structure with temperature. Thus, metazoan and bacterial responses differ dramatically, suggesting that ecosystem responses to future climate change are likely to be far more complex than previously anticipated.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-11348-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 15 Powered bymore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-11348-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Jacobs, A.; Doran, C.; Murray, D. S.; Duffill Telsnig, J.; Laskowski, K. L.; Jones, N. A. R.; Auer, S. K.; Praebel, K.;doi: 10.1111/jfb.13545
pmid: 29537088
Many fish species face increasing challenges associated with climate change and overfishing. At the same time, aquaculture is becoming vital for food security. Gaining a deeper understanding of the basic biology of fish is therefore more important than ever. Here we synthesize and summarize key questions, opportunities and challenges in fish biology highlighted during a round‐table discussion at the 50th Anniversary Symposium of The Fisheries Society of the British Isles, held at the University of Exeter, U.K., in July 2017. We identified several knowledge gaps but also key opportunities for fish biology to inform food security, for collective behaviour, evolutionary history and trait correlations to predict responses to environmental change and for novel analytical approaches to mine existing data sets. Overall, more integrative approaches through stronger collaborations across different fields are needed to advance our understanding of the basic biology of fish.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/159208/1/159208.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Fish BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.13545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 444 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/159208/1/159208.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Fish BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.13545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Edith Garot; Thierry Joët; Marie‐Christine Combes; Dany Severac; Philippe Lashermes;doi: 10.1111/nph.16052
pmid: 31291469
Summary Past climatic fluctuations have played a major role in shaping the current plant biodiversity. Although harbouring an exceptional biota, oceanic islands have received little attention in studies on species demographic history and past vegetation patterns. We investigated the impact of past climatic changes on the effective population size of a tree (Coffea mauritiana) that is endemic to Reunion Island, located in the south‐western Indian Ocean (SWIO). Demographic changes were inferred using summary statistics calculated from genomic data. Using ecological niche modelling and the current distribution of genetic diversity, the paleodistribution of the species was also assessed. A reduction in the effective population size of C. mauritiana during the last glaciation maximum was inferred. The distribution of the species was reduced on the western side of the island, due to low rainfall. It appeared that a major reduction in rainfall and a slight temperature decrease prevailed in the SWIO. Our findings indicated that analyses on the current patterns of intraspecific genetic variations can efficiently contribute to past climatic changes characterisation in remote islands. Identifying area with higher resilience in oceanic islands could provide guidance in forest management and conservation faced to the global climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Oxford University Press (OUP) Mônica M. C. Muelbert; M. de Bruyn; Claudio Campagna; L. J. Corrigan; A. R. Hoelzel; Marthán N Bester; L. F. Chauke; L. F. Chauke; Armanda D.S. Bastos; Anna Fabiani; Anna Fabiani; Clive R. McMahon;doi: 10.1111/jeb.12870
pmid: 27012933
AbstractUnderstanding observed patterns of connectivity requires an understanding of the evolutionary processes that determine genetic structure among populations, with the most common models being associated with isolation by distance, allopatry or vicariance. Pinnipeds are annual breeders with the capacity for extensive range overlap during seasonal migrations, establishing the potential for the evolution of isolation by distance. Here, we assess the pattern of differentiation among six breeding colonies of the southern elephant seal, Mirounga leonina, based on mtDNA and 15 neutral microsatellite DNA markers, and consider measures of their demography and connectivity. We show that all breeding colonies are genetically divergent and that connectivity in this highly mobile pinniped is not strongly associated with geographic distance, but more likely linked to Holocene climate change and demographic processes. Estimates of divergence times between populations were all after the last glacial maximum, and there was evidence for directional migration in a clockwise pattern (with the prevailing current) around the Antarctic. We discuss the mechanisms by which climate change may have contributed to the contemporary genetic structure of southern elephant seal populations and the broader implications.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, AustraliaPublisher:Inter-Research Science Center Andrew H. Baird; Joshua S. Madin; Kyle J. A. Zawada; Maria Dornelas; Sean R. Connolly; Tom C. L. Bridge; Tom C. L. Bridge;doi: 10.3354/meps12735
handle: 10023/18606
Coral reefs are being subjected to an increase in the frequency and intensity of disturbance, such as bleaching and cyclones, and it is important to document the effects of such disturbance on reef coral assemblages. Between March 2014 and May 2017, the reefs of Lizard Island in the northern section of the Great Barrier Reef were affected by 4 consecutive disturbances: severe tropical cyclones Ita and Nathan in 2014 and 2015, and mass bleaching events in 2016 and 2017. Loss of coral cover following the cyclones was patchy and dependent on the direction of the waves generated. In contrast, loss of cover following bleaching was much more uniform. Overall, coral cover declined 5-fold from 36% pre-cyclone Ita to 7% post-bleaching in 2017, while mean species richness dropped from 10 to 4 species per transect. The spatial scale and magnitude of the loss of coral cover in the region suggests that it will be many years before these reefs recover.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.3354/meps12735Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 377 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.3354/meps12735Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:The Royal Society Funded by:EC | BioCHANGEEC| BioCHANGEAuthors: Isaac Trindade-Santos; Faye Moyes; Anne E. Magurran;Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 352 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Nov 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Beyer, Robert M; Manica, Andrea;pmid: 33159054
pmc: PMC7648644
AbstractSpecies’ vulnerability to extinction is strongly impacted by their geographical range size. Formulating effective conservation strategies therefore requires a better understanding of how the ranges of the world’s species have changed in the past, and how they will change under alternative future scenarios. Here, we use reconstructions of global land use and biomes since 1700, and 16 possible climatic and socio-economic scenarios until the year 2100, to map the habitat ranges of 16,919 mammal, bird, and amphibian species through time. We estimate that species have lost an average of 18% of their natural habitat range sizes thus far, and may lose up to 23% by 2100. Our data reveal that range losses have been increasing disproportionately in relation to the area of destroyed habitat, driven by a long-term increase of land use in tropical biodiversity hotspots. The outcomes of different future climate and land use trajectories for global habitat ranges vary drastically, providing important quantitative evidence for conservation planners and policy makers of the costs and benefits of alternative pathways for the future of global biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSERC, NSF | SGER: Development of Equi..., NSF | Intestinal Bicarbonate Se... +2 projectsNSERC ,NSF| SGER: Development of Equipement and Methodology for Simultaneous Measurements of Epithelial Transport and Oxygen Consumption ,NSF| Intestinal Bicarbonate Secretion in Marine Teleost Fish ,UKRI| Novel driving forces for water transport & osmoregulation: carbonate precipitation and osmotic coefficients ,NSF| Intestinal Bicarbonate Secretion, Osmoregulation and Acid-Base Balance in Marine FishJosi R. Taylor; Frank J. Millero; Villy Christensen; Patrick J. Walsh; Patrick J. Walsh; Simon Jennings; Martin Grosell; Rod W. Wilson;pmid: 19150840
Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.
Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Norway, Netherlands, Spain, France, Spain, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Bastien Mérigot; Romain Frelat; Iça Barri; Feriha Tserkova; Jason Conner; Daniela V. Yepsen; Richard L. O'Driscoll; Laurene Pecuchet; Margrete Emblemsvåg; Helle Siegstad; James T. Thorson; Ingrid Spies; Alexander Arkhipkin; Jorge E. Ramos; Richard J. Bell; Luis A. Cubillos; Heino O. Fock; Malin L. Pinsky; Saïkou Oumar Kidé; Menachem Goren; Laurène Mérillet; Laurène Mérillet; Manuel Hidalgo; Aurore Maureaud; Arnaud Auber; Vladimir Kulik; Jón Sólmundsson; Cecilia A. O'Leary; Matthew McLean; Ya’arit Levitt-Barmats; Dori Edelist; Jacqueline Palacios León; Félix Massiot-Granier; Kevin D. Friedland; Itai van Rijn; Kofi Amador; Hamet Diaw Diadhiou; Esther Beukhof; Petur Steingrund; Henrik Gislason; Philippe Ziegler; Wahid Refes; Martin Lindegren; Jérôme Guitton; Ignacio Sobrino; Ian Knuckey; Beyah Meissa; Billy Ernst; Evangelos Tzanatos; Vesselina Mihneva; Marcos Llope; Tarek Hattab; Elitsa Petrova; Jonathan Belmaker; Didier Gascuel; Camilo B. García; Mohamed Lamine Camara; Nir Stern; G. Tserpes; Didier Jouffre; Tracey P. Fairweather; Paraskevas Vasilakopoulos; Matt Koopman; Francis K. E. Nunoo; Fabrice Stephenson; Oren Sonin; Paul A.M. van Zwieten; Hicham Masski; Nancy L. Shackell; Esther Román-Marcote; Mariano Koen-Alonso; Junghwa Choi; Sean C. Anderson; Helle Torp Christensen; Johannes N. Kathena; Renato Guevara-Carrasco;AbstractMarine biota is redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. We further found that single surveys do not cover the full range of the main commercial demersal fish species and that an average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with vector autoregressive spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 24 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Future-Proofing the Susta..., UKRI | Effects of warming on rec...UKRI| Future-Proofing the Sustainability of the MRC High Throughput Sequencing Hub in Scotland ,UKRI| Effects of warming on recruitment and marine benthic community development in AntarcticaMelody S. Clark; Gail V. Ashton; Leyre Villota Nieva; Leyre Villota Nieva; Andrew J. Davies; Lloyd S. Peck; Joseph I. Hoffman; Frances Turner; Urmi Trivedi;AbstractMarine encrusting communities play vital roles in benthic ecosystems and have major economic implications with regards to biofouling. However, their ability to persist under projected warming scenarios remains poorly understood and is difficult to study under realistic conditions. Here, using heated settlement panel technologies, we show that after 18 months Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient temperatures. There is significant up-regulation of the cellular stress response in warmed animals, their upper lethal temperatures decline with increasing ambient temperature and population genetic analyses show little evidence of differential survival of genotypes with treatment. By contrast, biofilm bacterial communities show no significant differences in community structure with temperature. Thus, metazoan and bacterial responses differ dramatically, suggesting that ecosystem responses to future climate change are likely to be far more complex than previously anticipated.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-11348-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 15 Powered bymore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-11348-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Jacobs, A.; Doran, C.; Murray, D. S.; Duffill Telsnig, J.; Laskowski, K. L.; Jones, N. A. R.; Auer, S. K.; Praebel, K.;doi: 10.1111/jfb.13545
pmid: 29537088
Many fish species face increasing challenges associated with climate change and overfishing. At the same time, aquaculture is becoming vital for food security. Gaining a deeper understanding of the basic biology of fish is therefore more important than ever. Here we synthesize and summarize key questions, opportunities and challenges in fish biology highlighted during a round‐table discussion at the 50th Anniversary Symposium of The Fisheries Society of the British Isles, held at the University of Exeter, U.K., in July 2017. We identified several knowledge gaps but also key opportunities for fish biology to inform food security, for collective behaviour, evolutionary history and trait correlations to predict responses to environmental change and for novel analytical approaches to mine existing data sets. Overall, more integrative approaches through stronger collaborations across different fields are needed to advance our understanding of the basic biology of fish.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/159208/1/159208.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Fish BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.13545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 444 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/159208/1/159208.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Fish BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.13545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu