- home
- Search
- Energy Research
- Open Access
- Restricted
- 7. Clean energy
- 12. Responsible consumption
- 2. Zero hunger
- FR
- IN
- Energy Research
- Open Access
- Restricted
- 7. Clean energy
- 12. Responsible consumption
- 2. Zero hunger
- FR
- IN
Research data keyboard_double_arrow_right Dataset 2023Publisher:SEANOE Long, Marc; Lelong, Aurélie; Bucciarelli, Eva; Le Grand, Fabienne; Hegaret, Helene; Soudant, Philippe;doi: 10.17882/94472
This dataset contains the data used in the manuscript "Physiological adaptation of the diatom Pseudo-nitzschia delicatissima under copper starvation" accepted for publication in April 2023 in Marine Environmental Research. In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. This dataset contains the data collected during the experimental starvation of a strain of the diatom P. delicatissima under laboratory controlled conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Springer Science and Business Media LLC Authors: Devendra Prasad Maurya; Ankit Singla; Sangeeta Negi;Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Dipak R. Swain; Sunita S. Biswal; Pravat Kumar Rout; P. K. Ray; R. K. Jena;<abstract> <p>The rising proportion of inverter-based renewable energy sources in current power systems has reduced the rotational inertia of overall microgrid systems. This may cause high-frequency fluctuations in the system leading to system instability. Several initiatives have been suggested concerning inertia emulation based on other integrated external energy sources, such as energy storage systems, to combat the ever-declining issue of inertia. Hence, to deal with the aforementioned issue, we suggest the development of an optimal fractional sliding mode control (FSMC)-based frequency stabilization strategy for an industrial hybrid microgrid. An explicit state-space industrial microgrids model comprised of several coordinated energy sources along with loads, storage systems, photovoltaic and wind farms, is considered. In addition to this, the impact of electric vehicles and batteries with adequate control of the state of charge was investigated due to their short regulation times and this helps to balance the power supply and demand that in turn brings the minimization of the frequency deviations. The performance of the FSMC controller is enhanced by setting optimal parameters by employing the tuning strategy based on an iterative teaching-learning-based optimizer (ITLBO). To justify the efficacy of the proposed controller, the simulated results were obtained under several system conditions by using a vehicle simulator in a MATLAB/Simulink environment. The results reveal the enhanced performance of the ITLBO optimized fractional sliding mode control to effectively damp the frequency oscillations and retain the frequency stability with robustness, quick damping, and reliability under different system conditions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/electreng.2023002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/electreng.2023002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Subham Sahoo; Sukumar Mishra; Seyed Mahdi Fazeli; Furong Li; Tomislav Dragičević;Dans des scénarios réalistes, la performance dynamique d'un cluster de micro-réseaux est largement affectée par la puissance intermittente des sources d'énergie renouvelables et les changements de charge fréquents. Pour résoudre ce problème, un contrôleur secondaire à double couche basé sur le temps fixe distribué est conçu pour améliorer les performances dynamiques inter-microgrid et intra-microgrid dans un temps de stabilisation fixe. Le contrôleur proposé est indépendant des valeurs de fonctionnement initiales par opposition à la loi de contrôle à temps fini. Chaque agent global dans un micro-réseau fonctionne pour atténuer le décalage de charge entre les autres agents globaux, tandis que chaque agent local dans un micro-réseau fonctionne pour réaliser un partage de courant de charge proportionnel et une régulation de tension moyenne entre eux dans un temps fixe. Cependant, comme l'atténuation de la non-concordance de chargement dans des conditions de charge légère affecte l'efficacité du système en raison de pertes de ligne importantes, le fonctionnement du cluster passe à une approche de minimisation des pertes distribuées, qui fonctionne en utilisant des mesures en ligne des micro-réseaux voisins. Pour caractériser le mode de fonctionnement dans la cyber-couche globale, un seuil de point de chargement critique pour le cluster est ainsi déterminé. La performance du cluster utilisant la stratégie proposée est simulée dans l'environnement MATLAB/SIMULINK pour divers scénarios afin de démontrer sa fiabilité et son efficacité. En escenarios realistas, el rendimiento dinámico de un grupo de microrredes se ve afectado en gran medida por la potencia intermitente de las fuentes de energía renovables y los frecuentes cambios de carga. Para abordar este problema, un controlador secundario de doble capa basado en tiempo fijo distribuido está diseñado para mejorar el rendimiento dinámico entre microrredes y entre microrredes dentro de un tiempo de asentamiento fijo. El controlador propuesto es independiente de los valores operativos iniciales en oposición a la ley de control de tiempo finito. Cada agente global en una microrred opera para mitigar el desajuste de carga entre otros agentes globales, mientras que cada agente local en una microrred opera para lograr un reparto de corriente de carga proporcional y una regulación de voltaje promedio entre ellos en un tiempo fijo. Sin embargo, como la mitigación de la falta de coincidencia de carga durante condiciones de carga ligera afecta la eficiencia del sistema debido a pérdidas de línea significativas, la operación del clúster cambia a un enfoque de minimización de pérdidas distribuidas, que opera utilizando mediciones en línea de las microrredes vecinas. Para caracterizar el modo de operación en la capa cibernética global, se determina así un punto crítico de umbral de carga para el clúster. El rendimiento del clúster que emplea la estrategia propuesta se simula en el entorno MATLAB/SIMULINK para varios escenarios para demostrar su confiabilidad y eficiencia. In realistic scenarios, the dynamic performance of a microgrid cluster is largely affected by the intermittent power of renewable energy sources and frequent load changes. To address this issue, a distributed fixed-time based dual layer secondary controller is designed to improve inter-microgrid and intra-microgrid dynamic performance within a fixed settling time. The proposed controller is independent of initial operating values as opposed to the finite time control law. Each global agent in a microgrid operates to mitigate loading mismatch between other global agents, whereas each local agent in a microgrid operates to achieve proportionate load current sharing and average voltage regulation between them in fixed time. However, as loading mismatch mitigation during light load conditions affects the system efficiency due to significant line losses, the cluster operation switches to a distributed loss minimization approach, which operates using online measurements from the neighboring microgrids. To characterize the mode of operation in the global cyber layer, a critical point of loading threshold for the cluster is thus determined. The performance of the cluster employing the proposed strategy is simulated in MATLAB/SIMULINK environment for various scenarios to demonstrate its reliability and efficiency. في السيناريوهات الواقعية، يتأثر الأداء الديناميكي لمجموعة الشبكات الصغيرة إلى حد كبير بالطاقة المتقطعة لمصادر الطاقة المتجددة والتغيرات المتكررة في الحمل. لمعالجة هذه المشكلة، تم تصميم وحدة تحكم ثانوية ثنائية الطبقة موزعة على أساس الوقت الثابت لتحسين الأداء الديناميكي بين الشبكات الدقيقة وداخلها في غضون وقت استقرار ثابت. وحدة التحكم المقترحة مستقلة عن قيم التشغيل الأولية بدلاً من قانون التحكم في الوقت المحدود. يعمل كل عامل عالمي في شبكة صغرى على التخفيف من عدم تطابق التحميل بين العوامل العالمية الأخرى، في حين يعمل كل عامل محلي في شبكة صغرى على تحقيق مشاركة تيار الحمل المتناسب ومتوسط تنظيم الجهد بينهما في وقت محدد. ومع ذلك، نظرًا لأن تخفيف عدم تطابق التحميل أثناء ظروف الحمل الخفيف يؤثر على كفاءة النظام بسبب الخسائر الكبيرة في الخطوط، تتحول عملية المجموعة إلى نهج تقليل الخسارة الموزعة، والذي يعمل باستخدام القياسات عبر الإنترنت من الشبكات الصغيرة المجاورة. لتوصيف طريقة التشغيل في الطبقة السيبرانية العالمية، يتم تحديد نقطة حرجة لعتبة التحميل للمجموعة. تتم محاكاة أداء المجموعة التي تستخدم الاستراتيجية المقترحة في بيئة ماتلاب/سيمولينك لسيناريوهات مختلفة لإثبات موثوقيتها وكفاءتها.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2019.2934905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2019.2934905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T. Fasquelle; Q. Falcoz; P. Neveu; F. Lecat; G. Flamant;Abstract This work aims to predict the general performances of a pilot parabolic trough collector during transient periods. To do so, a one-dimensional thermal model has been developed. It has been validated with experimental results from two different experimental setups, in steady-state conditions, with a transmitted power maximum error of 3.4%. Since the model only predicts the collector's thermal behavior, the parabolic trough collector has been first optically qualified. Then, optical efficiencies were used as input for the model. Experimental results were obtained in steady-state conditions and compared to the model. Then, experimental and numerical results were compared during two period of time with varying inlet conditions (i.e. dynamic condition tests): the first one with stable conditions, and the other one with harsh conditions. The developed model showed a good capability of predicting the thermal behavior of the parabolic trough collector with unstable environment (DNI, mass flow, inlet temperature), with a 9.6% relative standard error in the worst case. As a conclusion, while previous studies only focused on steady-state conditions, it has been showed that this kind of model can be used to precisely predict the dynamic behavior of large power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Association Internationale de management strategique (AIMS) Authors: Liliane Carmagnac; Anne Touboulic; Valentina Carbone;Multistakeholder Meta-Organisations (MS-MOs) are often perceived as a ‘magic bullet’ that can tackle societal grand challenges in global supply chains. In this paper, we consider the case of the Roundtable on Sustainable Palm Oil (RSPO), and we investigate the extent to which an MS-MO reshapes the attribution of responsibility for sustainability in supply chains, especially in relation to underlying power dynamics. We conduct a multimodal critical discourse analysis of a broad range of sources, including videos and interviews. We show that through its discursive strategies, the RSPO allocates the responsibility for social and environmental issues to the two extremes of the supply chain: objectifying consumers at one end and smallholders at the other, hence reproducing and even exacerbating the traditional imbalanced power dynamics in supply chains. Our work contributes to the emerging, more critical strand of research investigating meta-organisations (MOs) and sustainable supply chain management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Li, Jun; Colombier, Michel; Giraud, Pierre-Noël;Abstract This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO2) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO2 emissions mitigation.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:SEANOE Long, Marc; Lelong, Aurélie; Bucciarelli, Eva; Le Grand, Fabienne; Hegaret, Helene; Soudant, Philippe;doi: 10.17882/94472
This dataset contains the data used in the manuscript "Physiological adaptation of the diatom Pseudo-nitzschia delicatissima under copper starvation" accepted for publication in April 2023 in Marine Environmental Research. In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. This dataset contains the data collected during the experimental starvation of a strain of the diatom P. delicatissima under laboratory controlled conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Springer Science and Business Media LLC Authors: Devendra Prasad Maurya; Ankit Singla; Sangeeta Negi;Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Dipak R. Swain; Sunita S. Biswal; Pravat Kumar Rout; P. K. Ray; R. K. Jena;<abstract> <p>The rising proportion of inverter-based renewable energy sources in current power systems has reduced the rotational inertia of overall microgrid systems. This may cause high-frequency fluctuations in the system leading to system instability. Several initiatives have been suggested concerning inertia emulation based on other integrated external energy sources, such as energy storage systems, to combat the ever-declining issue of inertia. Hence, to deal with the aforementioned issue, we suggest the development of an optimal fractional sliding mode control (FSMC)-based frequency stabilization strategy for an industrial hybrid microgrid. An explicit state-space industrial microgrids model comprised of several coordinated energy sources along with loads, storage systems, photovoltaic and wind farms, is considered. In addition to this, the impact of electric vehicles and batteries with adequate control of the state of charge was investigated due to their short regulation times and this helps to balance the power supply and demand that in turn brings the minimization of the frequency deviations. The performance of the FSMC controller is enhanced by setting optimal parameters by employing the tuning strategy based on an iterative teaching-learning-based optimizer (ITLBO). To justify the efficacy of the proposed controller, the simulated results were obtained under several system conditions by using a vehicle simulator in a MATLAB/Simulink environment. The results reveal the enhanced performance of the ITLBO optimized fractional sliding mode control to effectively damp the frequency oscillations and retain the frequency stability with robustness, quick damping, and reliability under different system conditions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/electreng.2023002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/electreng.2023002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Subham Sahoo; Sukumar Mishra; Seyed Mahdi Fazeli; Furong Li; Tomislav Dragičević;Dans des scénarios réalistes, la performance dynamique d'un cluster de micro-réseaux est largement affectée par la puissance intermittente des sources d'énergie renouvelables et les changements de charge fréquents. Pour résoudre ce problème, un contrôleur secondaire à double couche basé sur le temps fixe distribué est conçu pour améliorer les performances dynamiques inter-microgrid et intra-microgrid dans un temps de stabilisation fixe. Le contrôleur proposé est indépendant des valeurs de fonctionnement initiales par opposition à la loi de contrôle à temps fini. Chaque agent global dans un micro-réseau fonctionne pour atténuer le décalage de charge entre les autres agents globaux, tandis que chaque agent local dans un micro-réseau fonctionne pour réaliser un partage de courant de charge proportionnel et une régulation de tension moyenne entre eux dans un temps fixe. Cependant, comme l'atténuation de la non-concordance de chargement dans des conditions de charge légère affecte l'efficacité du système en raison de pertes de ligne importantes, le fonctionnement du cluster passe à une approche de minimisation des pertes distribuées, qui fonctionne en utilisant des mesures en ligne des micro-réseaux voisins. Pour caractériser le mode de fonctionnement dans la cyber-couche globale, un seuil de point de chargement critique pour le cluster est ainsi déterminé. La performance du cluster utilisant la stratégie proposée est simulée dans l'environnement MATLAB/SIMULINK pour divers scénarios afin de démontrer sa fiabilité et son efficacité. En escenarios realistas, el rendimiento dinámico de un grupo de microrredes se ve afectado en gran medida por la potencia intermitente de las fuentes de energía renovables y los frecuentes cambios de carga. Para abordar este problema, un controlador secundario de doble capa basado en tiempo fijo distribuido está diseñado para mejorar el rendimiento dinámico entre microrredes y entre microrredes dentro de un tiempo de asentamiento fijo. El controlador propuesto es independiente de los valores operativos iniciales en oposición a la ley de control de tiempo finito. Cada agente global en una microrred opera para mitigar el desajuste de carga entre otros agentes globales, mientras que cada agente local en una microrred opera para lograr un reparto de corriente de carga proporcional y una regulación de voltaje promedio entre ellos en un tiempo fijo. Sin embargo, como la mitigación de la falta de coincidencia de carga durante condiciones de carga ligera afecta la eficiencia del sistema debido a pérdidas de línea significativas, la operación del clúster cambia a un enfoque de minimización de pérdidas distribuidas, que opera utilizando mediciones en línea de las microrredes vecinas. Para caracterizar el modo de operación en la capa cibernética global, se determina así un punto crítico de umbral de carga para el clúster. El rendimiento del clúster que emplea la estrategia propuesta se simula en el entorno MATLAB/SIMULINK para varios escenarios para demostrar su confiabilidad y eficiencia. In realistic scenarios, the dynamic performance of a microgrid cluster is largely affected by the intermittent power of renewable energy sources and frequent load changes. To address this issue, a distributed fixed-time based dual layer secondary controller is designed to improve inter-microgrid and intra-microgrid dynamic performance within a fixed settling time. The proposed controller is independent of initial operating values as opposed to the finite time control law. Each global agent in a microgrid operates to mitigate loading mismatch between other global agents, whereas each local agent in a microgrid operates to achieve proportionate load current sharing and average voltage regulation between them in fixed time. However, as loading mismatch mitigation during light load conditions affects the system efficiency due to significant line losses, the cluster operation switches to a distributed loss minimization approach, which operates using online measurements from the neighboring microgrids. To characterize the mode of operation in the global cyber layer, a critical point of loading threshold for the cluster is thus determined. The performance of the cluster employing the proposed strategy is simulated in MATLAB/SIMULINK environment for various scenarios to demonstrate its reliability and efficiency. في السيناريوهات الواقعية، يتأثر الأداء الديناميكي لمجموعة الشبكات الصغيرة إلى حد كبير بالطاقة المتقطعة لمصادر الطاقة المتجددة والتغيرات المتكررة في الحمل. لمعالجة هذه المشكلة، تم تصميم وحدة تحكم ثانوية ثنائية الطبقة موزعة على أساس الوقت الثابت لتحسين الأداء الديناميكي بين الشبكات الدقيقة وداخلها في غضون وقت استقرار ثابت. وحدة التحكم المقترحة مستقلة عن قيم التشغيل الأولية بدلاً من قانون التحكم في الوقت المحدود. يعمل كل عامل عالمي في شبكة صغرى على التخفيف من عدم تطابق التحميل بين العوامل العالمية الأخرى، في حين يعمل كل عامل محلي في شبكة صغرى على تحقيق مشاركة تيار الحمل المتناسب ومتوسط تنظيم الجهد بينهما في وقت محدد. ومع ذلك، نظرًا لأن تخفيف عدم تطابق التحميل أثناء ظروف الحمل الخفيف يؤثر على كفاءة النظام بسبب الخسائر الكبيرة في الخطوط، تتحول عملية المجموعة إلى نهج تقليل الخسارة الموزعة، والذي يعمل باستخدام القياسات عبر الإنترنت من الشبكات الصغيرة المجاورة. لتوصيف طريقة التشغيل في الطبقة السيبرانية العالمية، يتم تحديد نقطة حرجة لعتبة التحميل للمجموعة. تتم محاكاة أداء المجموعة التي تستخدم الاستراتيجية المقترحة في بيئة ماتلاب/سيمولينك لسيناريوهات مختلفة لإثبات موثوقيتها وكفاءتها.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2019.2934905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2019.2934905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T. Fasquelle; Q. Falcoz; P. Neveu; F. Lecat; G. Flamant;Abstract This work aims to predict the general performances of a pilot parabolic trough collector during transient periods. To do so, a one-dimensional thermal model has been developed. It has been validated with experimental results from two different experimental setups, in steady-state conditions, with a transmitted power maximum error of 3.4%. Since the model only predicts the collector's thermal behavior, the parabolic trough collector has been first optically qualified. Then, optical efficiencies were used as input for the model. Experimental results were obtained in steady-state conditions and compared to the model. Then, experimental and numerical results were compared during two period of time with varying inlet conditions (i.e. dynamic condition tests): the first one with stable conditions, and the other one with harsh conditions. The developed model showed a good capability of predicting the thermal behavior of the parabolic trough collector with unstable environment (DNI, mass flow, inlet temperature), with a 9.6% relative standard error in the worst case. As a conclusion, while previous studies only focused on steady-state conditions, it has been showed that this kind of model can be used to precisely predict the dynamic behavior of large power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Association Internationale de management strategique (AIMS) Authors: Liliane Carmagnac; Anne Touboulic; Valentina Carbone;Multistakeholder Meta-Organisations (MS-MOs) are often perceived as a ‘magic bullet’ that can tackle societal grand challenges in global supply chains. In this paper, we consider the case of the Roundtable on Sustainable Palm Oil (RSPO), and we investigate the extent to which an MS-MO reshapes the attribution of responsibility for sustainability in supply chains, especially in relation to underlying power dynamics. We conduct a multimodal critical discourse analysis of a broad range of sources, including videos and interviews. We show that through its discursive strategies, the RSPO allocates the responsibility for social and environmental issues to the two extremes of the supply chain: objectifying consumers at one end and smallholders at the other, hence reproducing and even exacerbating the traditional imbalanced power dynamics in supply chains. Our work contributes to the emerging, more critical strand of research investigating meta-organisations (MOs) and sustainable supply chain management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Li, Jun; Colombier, Michel; Giraud, Pierre-Noël;Abstract This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO2) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO2 emissions mitigation.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu