- home
- Search
- Energy Research
- 15. Life on land
- FR
- Apollo
- Energy Research
- 15. Life on land
- FR
- Apollo
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, France, United Kingdom, France, United Kingdom, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | GREENCYCLESIIEC| GREENCYCLESIIAndrew D. Friend; F. Ian Woodward; Tim T. Rademacher; Ron Kahana; Sibyll Schaphoff; Richard Betts; Akihiko Ito; Andy Wiltshire; Rutger Dankers; Axel Kleidon; Pete Falloon; Wolfgang Lucht; Wolfgang Lucht; Philippe Ciais; Lila Warszawski; Nicolas Vuichard; Philippe Peylin; Patricia Cadule; Mark R. Lomas; Rozenn Keribin; Douglas B. Clark; Sebastian Ostberg; Kazuya Nishina; Ryan Pavlick;Future climate change and increasing atmospheric CO 2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO 2 ), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO 2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.
Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222477110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 455 citations 455 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 63 Powered bymore_vert Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222477110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 12 May 2022 Portugal, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., UKRI | Behaviourally-mediated sh...ARC| Discovery Projects - Grant ID: DP200100575 ,UKRI| Behaviourally-mediated shifts in reef fish communities following severe disturbanceHerbert-Read, James E; Thornton, Ann; Amon, Diva J; Birchenough, Silvana NR; Côté, Isabelle M; Dias, Maria P; Godley, Brendan J; Keith, Sally A; McKinley, Emma; Peck, Lloyd S; Calado, Ricardo; Defeo, Omar; Degraer, Steven; Johnston, Emma L; Kaartokallio, Hermanni; Macreadie, Peter I; Metaxas, Anna; Muthumbi, Agnes WN; Obura, David O; Paterson, David M; Piola, Alberto R; Richardson, Anthony J; Schloss, Irene R; Snelgrove, Paul VR; Stewart, Bryce D; Thompson, Paul M; Watson, Gordon J; Worthington, Thomas A; Yasuhara, Moriaki; Sutherland, William J;pmid: 35798839
handle: 10023/26547 , 2164/19808
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 577visibility views 577 download downloads 53 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 12 Feb 2019 Italy, United KingdomPublisher:Elsevier BV Funded by:SNSF | How does forest microclim..., EC | FORMICA, UKRI | Biodiversity and Ecosyste... +2 projectsSNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical Forests ,EC| TRuStEE ,EC| ECOPOTENTIALDavid A. Coomes; Pieter De Frenne; Duccio Rocchini; Duccio Rocchini; Florian Zellweger; Jonathan Lenoir;Microclimates at the land-air interface affect the physiological functioning of organisms which, in turn, influences the structure, composition, and functioning of ecosystems. We review how remote sensing technologies that deliver detailed data about the structure and thermal composition of environments are improving the assessment of microclimate over space and time. Mapping landscape-level heterogeneity of microclimate advances our ability to study how organisms respond to climate variation, which has important implications for understanding climate-change impacts on biodiversity and ecosystems. Interpolating in situ microclimate measurements and downscaling macroclimate provides an organism-centered perspective for studying climate-species interactions and species distribution dynamics. We envisage that mapping of microclimate will soon become commonplace, enabling more reliable predictions of species and ecosystem responses to global change.
Hyper Article en Lig... arrow_drop_down Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2018.12.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 251 citations 251 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2018.12.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United States, Australia, Denmark, United Kingdom, United Kingdom, United StatesPublisher:Wiley Thomas M. Brooks; Thomas M. Brooks; Thomas M. Brooks; Ackbar Joolia; Jörn P. W. Scharlemann; Carlo Rondinini; Simon N. Stuart; Bastian Bertzky; Beth Polidoro; Beth Polidoro; John B. Cornell; Lucas Joppa; Stuart H. M. Butchart; Heather Harwell; Heather Harwell; Jonas Geldmann; Ian May; Richard A. Fuller; Rachel E. Sykes; Louisa Wood; Louisa Wood; Naomi Kingston; Nadia I. Richman; Joseph Taylor; Mark Spalding; Lincoln Fishpool; Amy Milam; Mia T. Comeros-Raynal; Andrew Balmford; G. Francesco Ficetola; James E. M. Watson; James E. M. Watson; Mike Harfoot; Mike Harfoot; Benjamin Skolnik; Neil D. Burgess; Neil D. Burgess; Ariadne Angulo; Kent E. Carpenter; Piero Visconti; Andy Symes; Daniel B. Segan; Daniel B. Segan; Michael R. Hoffmann; Michael R. Hoffmann; Martin Clarke; Graeme M. Buchanan; Robert J. Smith; Craig Hilton-Taylor; Gina M. Ralph;doi: 10.1111/conl.12158
handle: 2434/455602
AbstractGovernments have committed to conserving ≥17% of terrestrial and ≥10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area‐based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km2 terrestrial PA network needs only 3.3 million km2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, cost‐efficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community‐ and privately managed sites and other effective area‐based conservation measures.
CORE arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 42visibility views 42 download downloads 87 Powered bymore_vert CORE arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Embargo end date: 29 Feb 2020 United Kingdom, Netherlands, France, United Kingdom, FrancePublisher:Elsevier BV Rachel Carmenta; Fabrice DeClerck; Abigail K. Hart; Bhaskar Vira; David A. Coomes; Celia A. Harvey; Jeffrey C. Milder; Jeffrey C. Milder; James Reed; Natalia Estrada-Carmona; Natalia Estrada-Carmona;handle: 10568/112681
Sustainability agendas increasingly recognize that attaining conservation and development outcomes demands greater integration across sectors. Integrated landscape initiatives (ILIs) are a leading approach to reconciling multiple objectives. However, a characterization of the diversity of approaches under the ILI umbrella and the comparative performance of different types of approach is lacking. Here, we analyze questionnaire data obtained from project proponents to delimit four particular types of ILI: one type was dominated by agricultural interventions and another by conservation interventions, and these partially integrated ILIs engage local scales of governance; the remaining two types exhibit strong integration, with aims and actions across multiple sectors and scales of governance. We show that integrated projects were deemed to be more successful by project proponents. The typology offers the practitioner and research community an explicit set of strategies for selection, evaluation, and support and attests to the need for integration to achieve sustainable outcomes.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/112681Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2020.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 15 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/112681Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2020.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Sweden, Switzerland, Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The UK High-Field Solid-S..., UKRI | PDWallMech: Harnessing Pl..., UKRI | Regulation of cellulose s... +3 projectsUKRI| The UK High-Field Solid-State NMR National Research Facility ,UKRI| PDWallMech: Harnessing PlasmoDesma Wall Mechanics for plant biotech and biomaterials ,UKRI| Regulation of cellulose synthase assembly and cellulose microfibril structure ,EC| SYMDEV ,SNSF| Genetic control and molecular mechanisms of sieve plate morphogenesis in the phloem ,EC| SiPoMorphBourdon, Matthieu; Lyczakowski, Jan J; Cresswell, Rosalie; Amsbury, Sam; Vilaplana, Francisco; Le Guen, Marie-Joo; Follain, Nadège; Wightman, Raymond; Su, Chang; Alatorre-Cobos, Fulgencio; Ritter, Maximilian; Liszka, Aleksandra; Terrett, Oliver M; Yadav, Shri Ram; Vatén, Anne; Nieminen, Kaisa; Eswaran, Gugan; Alonso-Serra, Juan; Müller, Karin H; Iuga, Dinu; Miskolczi, Pal Csaba; Kalmbach, Lothar; Otero, Sofia; Mähönen, Ari Pekka; Bhalerao, Rishikesh; Bulone, Vincent; Mansfield, Shawn D; Hill, Stefan; Burgert, Ingo; Beaugrand, Johnny; Benitez-Alfonso, Yoselin; Dupree, Ray; Dupree, Paul; Helariutta, Ykä;pmid: 37666966
pmc: PMC10505557
AbstractPlant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01459-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01459-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2019Embargo end date: 22 Feb 2020 France, United Kingdom, FrancePublisher:Elsevier BV Funded by:UKRI | Biodiversity and ecosyste...UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forestsTerry Sunderland; Terry Sunderland; Josh van Vianen; Rachel Carmenta; Jos Barlow; James Reed; James Reed;handle: 10568/112341 , 10568/112340
Achieving equitable and sustainable development that supports climate change mitigation targets and avoids biodiversity loss remains a leading, and intractable challenge in many tropical countries. Sectorial thinking – focusing on just one aspect of the problem or system – is increasingly understood to be inadequate to address linked social-ecological challenges. Holistic approaches that incorporate diverse stakeholders across scales, sectors, and knowledge systems are gaining prominence for addressing complex problems. Such ‘integrated landscape approaches’ have received renewed momentum and interest from the research, donor and practitioner communities, and have been subsumed in international conventions related to climate, biodiversity, and sustainable development. However, implementation efforts and tangible evaluation of progress continues to lag behind conceptual development. Failure of landscape approaches to adequately engage diverse stakeholders—in design, implementation and evaluation—is a contributing factor to their poor performance. Here we draw on consultation workshops, advances in the literature, and our collective experience to identify key constraints and opportunities to better engage stakeholders in tropical landscape decision-making processes. Specifically, we ask: (1) what are the key challenges related to effectively engaging multiple stakeholders in integrated landscape approaches and (2) what lessons can be learned from practitioners, and how can these lessons serve as opportunities to avoid duplicating future research efforts or repeating past perceptions of underperformance. We present our findings within three broad categories: (i) navigating complexity, (ii) overcoming siloed thinking, and (iii) incentivizing behavioral change; thus providing a useful starting point for overcoming inherent challenges associated with engaging stakeholders in landscape approaches.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112341Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2019.108229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 47 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112341Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2019.108229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 08 Dec 2022 United Kingdom, France, United KingdomPublisher:MDPI AG Funded by:EC | OPEN, UKRI | NERC Industrial Strategy ...EC| OPEN ,UKRI| NERC Industrial Strategy Studentships 2017Frinault, Bétina AV; Christie, Frazer DW; Fawcett, Sarah E; Flynn, Raquel F; Hutchinson, Katherine A; Montes Strevens, Chloë MJ; Taylor, Michelle L; Woodall, Lucy C; Barnes, David KA;pmid: 36552215
pmc: PMC9774262
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology11121705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 12 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology11121705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, France, United Kingdom, France, United Kingdom, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | GREENCYCLESIIEC| GREENCYCLESIIAndrew D. Friend; F. Ian Woodward; Tim T. Rademacher; Ron Kahana; Sibyll Schaphoff; Richard Betts; Akihiko Ito; Andy Wiltshire; Rutger Dankers; Axel Kleidon; Pete Falloon; Wolfgang Lucht; Wolfgang Lucht; Philippe Ciais; Lila Warszawski; Nicolas Vuichard; Philippe Peylin; Patricia Cadule; Mark R. Lomas; Rozenn Keribin; Douglas B. Clark; Sebastian Ostberg; Kazuya Nishina; Ryan Pavlick;Future climate change and increasing atmospheric CO 2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO 2 ), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO 2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.
Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222477110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 455 citations 455 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 63 Powered bymore_vert Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222477110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 12 May 2022 Portugal, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., UKRI | Behaviourally-mediated sh...ARC| Discovery Projects - Grant ID: DP200100575 ,UKRI| Behaviourally-mediated shifts in reef fish communities following severe disturbanceHerbert-Read, James E; Thornton, Ann; Amon, Diva J; Birchenough, Silvana NR; Côté, Isabelle M; Dias, Maria P; Godley, Brendan J; Keith, Sally A; McKinley, Emma; Peck, Lloyd S; Calado, Ricardo; Defeo, Omar; Degraer, Steven; Johnston, Emma L; Kaartokallio, Hermanni; Macreadie, Peter I; Metaxas, Anna; Muthumbi, Agnes WN; Obura, David O; Paterson, David M; Piola, Alberto R; Richardson, Anthony J; Schloss, Irene R; Snelgrove, Paul VR; Stewart, Bryce D; Thompson, Paul M; Watson, Gordon J; Worthington, Thomas A; Yasuhara, Moriaki; Sutherland, William J;pmid: 35798839
handle: 10023/26547 , 2164/19808
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 577visibility views 577 download downloads 53 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 12 Feb 2019 Italy, United KingdomPublisher:Elsevier BV Funded by:SNSF | How does forest microclim..., EC | FORMICA, UKRI | Biodiversity and Ecosyste... +2 projectsSNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical Forests ,EC| TRuStEE ,EC| ECOPOTENTIALDavid A. Coomes; Pieter De Frenne; Duccio Rocchini; Duccio Rocchini; Florian Zellweger; Jonathan Lenoir;Microclimates at the land-air interface affect the physiological functioning of organisms which, in turn, influences the structure, composition, and functioning of ecosystems. We review how remote sensing technologies that deliver detailed data about the structure and thermal composition of environments are improving the assessment of microclimate over space and time. Mapping landscape-level heterogeneity of microclimate advances our ability to study how organisms respond to climate variation, which has important implications for understanding climate-change impacts on biodiversity and ecosystems. Interpolating in situ microclimate measurements and downscaling macroclimate provides an organism-centered perspective for studying climate-species interactions and species distribution dynamics. We envisage that mapping of microclimate will soon become commonplace, enabling more reliable predictions of species and ecosystem responses to global change.
Hyper Article en Lig... arrow_drop_down Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2018.12.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 251 citations 251 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2018.12.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United States, Australia, Denmark, United Kingdom, United Kingdom, United StatesPublisher:Wiley Thomas M. Brooks; Thomas M. Brooks; Thomas M. Brooks; Ackbar Joolia; Jörn P. W. Scharlemann; Carlo Rondinini; Simon N. Stuart; Bastian Bertzky; Beth Polidoro; Beth Polidoro; John B. Cornell; Lucas Joppa; Stuart H. M. Butchart; Heather Harwell; Heather Harwell; Jonas Geldmann; Ian May; Richard A. Fuller; Rachel E. Sykes; Louisa Wood; Louisa Wood; Naomi Kingston; Nadia I. Richman; Joseph Taylor; Mark Spalding; Lincoln Fishpool; Amy Milam; Mia T. Comeros-Raynal; Andrew Balmford; G. Francesco Ficetola; James E. M. Watson; James E. M. Watson; Mike Harfoot; Mike Harfoot; Benjamin Skolnik; Neil D. Burgess; Neil D. Burgess; Ariadne Angulo; Kent E. Carpenter; Piero Visconti; Andy Symes; Daniel B. Segan; Daniel B. Segan; Michael R. Hoffmann; Michael R. Hoffmann; Martin Clarke; Graeme M. Buchanan; Robert J. Smith; Craig Hilton-Taylor; Gina M. Ralph;doi: 10.1111/conl.12158
handle: 2434/455602
AbstractGovernments have committed to conserving ≥17% of terrestrial and ≥10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area‐based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km2 terrestrial PA network needs only 3.3 million km2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, cost‐efficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community‐ and privately managed sites and other effective area‐based conservation measures.
CORE arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 42visibility views 42 download downloads 87 Powered bymore_vert CORE arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Embargo end date: 29 Feb 2020 United Kingdom, Netherlands, France, United Kingdom, FrancePublisher:Elsevier BV Rachel Carmenta; Fabrice DeClerck; Abigail K. Hart; Bhaskar Vira; David A. Coomes; Celia A. Harvey; Jeffrey C. Milder; Jeffrey C. Milder; James Reed; Natalia Estrada-Carmona; Natalia Estrada-Carmona;handle: 10568/112681
Sustainability agendas increasingly recognize that attaining conservation and development outcomes demands greater integration across sectors. Integrated landscape initiatives (ILIs) are a leading approach to reconciling multiple objectives. However, a characterization of the diversity of approaches under the ILI umbrella and the comparative performance of different types of approach is lacking. Here, we analyze questionnaire data obtained from project proponents to delimit four particular types of ILI: one type was dominated by agricultural interventions and another by conservation interventions, and these partially integrated ILIs engage local scales of governance; the remaining two types exhibit strong integration, with aims and actions across multiple sectors and scales of governance. We show that integrated projects were deemed to be more successful by project proponents. The typology offers the practitioner and research community an explicit set of strategies for selection, evaluation, and support and attests to the need for integration to achieve sustainable outcomes.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/112681Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2020.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 15 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/112681Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2020.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Sweden, Switzerland, Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The UK High-Field Solid-S..., UKRI | PDWallMech: Harnessing Pl..., UKRI | Regulation of cellulose s... +3 projectsUKRI| The UK High-Field Solid-State NMR National Research Facility ,UKRI| PDWallMech: Harnessing PlasmoDesma Wall Mechanics for plant biotech and biomaterials ,UKRI| Regulation of cellulose synthase assembly and cellulose microfibril structure ,EC| SYMDEV ,SNSF| Genetic control and molecular mechanisms of sieve plate morphogenesis in the phloem ,EC| SiPoMorphBourdon, Matthieu; Lyczakowski, Jan J; Cresswell, Rosalie; Amsbury, Sam; Vilaplana, Francisco; Le Guen, Marie-Joo; Follain, Nadège; Wightman, Raymond; Su, Chang; Alatorre-Cobos, Fulgencio; Ritter, Maximilian; Liszka, Aleksandra; Terrett, Oliver M; Yadav, Shri Ram; Vatén, Anne; Nieminen, Kaisa; Eswaran, Gugan; Alonso-Serra, Juan; Müller, Karin H; Iuga, Dinu; Miskolczi, Pal Csaba; Kalmbach, Lothar; Otero, Sofia; Mähönen, Ari Pekka; Bhalerao, Rishikesh; Bulone, Vincent; Mansfield, Shawn D; Hill, Stefan; Burgert, Ingo; Beaugrand, Johnny; Benitez-Alfonso, Yoselin; Dupree, Ray; Dupree, Paul; Helariutta, Ykä;pmid: 37666966
pmc: PMC10505557
AbstractPlant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01459-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01459-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2019Embargo end date: 22 Feb 2020 France, United Kingdom, FrancePublisher:Elsevier BV Funded by:UKRI | Biodiversity and ecosyste...UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forestsTerry Sunderland; Terry Sunderland; Josh van Vianen; Rachel Carmenta; Jos Barlow; James Reed; James Reed;handle: 10568/112341 , 10568/112340
Achieving equitable and sustainable development that supports climate change mitigation targets and avoids biodiversity loss remains a leading, and intractable challenge in many tropical countries. Sectorial thinking – focusing on just one aspect of the problem or system – is increasingly understood to be inadequate to address linked social-ecological challenges. Holistic approaches that incorporate diverse stakeholders across scales, sectors, and knowledge systems are gaining prominence for addressing complex problems. Such ‘integrated landscape approaches’ have received renewed momentum and interest from the research, donor and practitioner communities, and have been subsumed in international conventions related to climate, biodiversity, and sustainable development. However, implementation efforts and tangible evaluation of progress continues to lag behind conceptual development. Failure of landscape approaches to adequately engage diverse stakeholders—in design, implementation and evaluation—is a contributing factor to their poor performance. Here we draw on consultation workshops, advances in the literature, and our collective experience to identify key constraints and opportunities to better engage stakeholders in tropical landscape decision-making processes. Specifically, we ask: (1) what are the key challenges related to effectively engaging multiple stakeholders in integrated landscape approaches and (2) what lessons can be learned from practitioners, and how can these lessons serve as opportunities to avoid duplicating future research efforts or repeating past perceptions of underperformance. We present our findings within three broad categories: (i) navigating complexity, (ii) overcoming siloed thinking, and (iii) incentivizing behavioral change; thus providing a useful starting point for overcoming inherent challenges associated with engaging stakeholders in landscape approaches.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112341Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2019.108229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 47 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112341Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2019.108229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 08 Dec 2022 United Kingdom, France, United KingdomPublisher:MDPI AG Funded by:EC | OPEN, UKRI | NERC Industrial Strategy ...EC| OPEN ,UKRI| NERC Industrial Strategy Studentships 2017Frinault, Bétina AV; Christie, Frazer DW; Fawcett, Sarah E; Flynn, Raquel F; Hutchinson, Katherine A; Montes Strevens, Chloë MJ; Taylor, Michelle L; Woodall, Lucy C; Barnes, David KA;pmid: 36552215
pmc: PMC9774262
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology11121705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 12 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03998622Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology11121705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu