search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
245 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 1. No poverty
  • 3. Good health
  • GB
  • EU
  • AU
  • FI
  • English

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Li, Ru; Perdana, Sigit; Vielle, Marc;

    This dataset contains the underlying data for the following publication: Li, R., Perdana, S., Vielle, M. (2021), Potential integration of Chinese and European emissions trading market: welfare distribution analysis, Mitigation and Adaptation Strategies for Global Change, 26:22 https://doi.org/10.1007/s11027-021-09960-7.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;

    Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This is a repository of global and regional human population data collected from: the databases of scenarios assessed by the Intergovernmental Panel on Climate Change (Sixth Assessment Report, Special Report on 1.5 C; Fifth Assessment Report), multi-national databases of population projections (World Bank, International Database, United Nation population projections), and other very long-term population projections (Resources for the Future). More specifically, it contains: - in `other_pop_data` folder files from World Bank, the International Database from the US Census, and from IHME - in the `SSP` folder, the Shared Socioeconomic Pathways, as in the version 2.0 downloaded from IIASA and as in the version 3.0 downloaded from IIASA workspace - in the `UN` folder, the demographic projections from UN - `IAMstat.xlsx`, an overview file of the metadata accompanying the scenarios present in the IPCC databases - `RFF.csv`, an overview file containing the population projections obtained by Resources For the Future '- the remaining `.csv` files with names `AR6#`, `AR5#`, `IAMC15#` contain the IPCC scenarios assessed by the IPCC for preparing the IPCC assessment reports. They can be downloaded from AR5, SR 1.5, and AR6 This data in intended to be downloaded for use together with the package downloadable here. The dataset was used as a supporting material for the paper "Underestimating demographic uncertainties in the synthesis process of the IPCC" accepted on npj Climate Action (DOI : 10.1038/s44168-024-00152-y).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility12
    visibilityviews12
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Climate change is worsening the number, frequency and duration of natural hazards across the globe, making disaster risk reduction and resilience building among the most pressing challenges ahead. According to UN-Habitat, informal settlements are where the impacts of climate change are the most acute in urban areas and strengthening resilience in these neighbourhoods represents a very complex yet urgent challenge. Today, urban areas are home to 56 per cent of the world’s population and this figure is projected to increase to 60 per cent by 2030 and 68 per cent by 2050, with 90 per cent of the growth by 2050 expected to occur in less developed economies. In these countries, population growth and displacement (including climate-driven migrations) will lead to rapid and unplanned urbanisation forcing a growing number of people into informal settlements. Currently, one billion people live in informal settlements, mostly in Asia, Sub-Saharan Africa and Latin America and this figure is expected to grow to 3 billion in 2050. Horizon 2020 MSCA-RISE, Grant Agreement #873119

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Jo-Anne Ferreira; Charles Arcodia; Debbie Cotterell;

    An important outcome of a university business education is to shape individuals who are capable of working in and operating businesses that deliver economically profitable, socially responsible and ecologically viable services. In preparing future sustainable tourism workers, universities also need to design curricula that develop students’ skills in critical thinking and acting with a sense of ethics and empathy. Research evidence indicates, however, that students often graduate without these skills. A potential reason for this is the design of tourism curricula based on weaker conceptualisations of sustainability (e.g. triple bottom line) as opposed to stronger conceptualisations of sustainability (more holistic and inclusive approaches). Another possible reason could be that educators are not successfully cultivating students’ abilities to think in more complex ways about sustainability nor are they adequately acknowledging the ways in which their students make sense of a complex concept such as sustainability. To add to the complexity of the sustainability phenomenon, there is growing international pressure on the tourism industry by the United Nations (UN) to work towards achieving the 17 global sustainable development goals (SDGs) by 2030. Despite recognition that tourism can help contribute towards the SDGs, a UN report provides evidence that tourism policymakers are not actively and sufficiently engaging with the SDGs. The UN’s recognition of the tourism industry’s ability to advance the SDGS through economic growth (SDG 8) is further problematic, even if this is seen as sustainable economic growth. The term ‘sustainable development’ has long been contested as a weaker form of sustainability due to its progrowth and development emphasis. Given the current global overtourism crisis, it seems more important than ever that universities pay attention to how sustainable tourism is being interpreted and implemented. This is necessary if educators are to truly encourage stronger sustainability mindsets in future tourism workers and change makers. Therefore, the overarching aim of this thesis is to explore how conceptualisations of strong sustainability amongst university students can be strengthened. This study is the first to explore the usefulness of variation theory in strengthening conceptualisations of strong sustainability amongst university tourism students. It provides the tourism literature with evidence of: 1) the conceptualisation of sustainability currently being integrated into undergraduate tourism courses by universities internationally; 2) the benefits of phenomenography as a research approach for studying qualitative difference in understanding concepts such as sustainability and sustainable tourism; 3) the viability of using a learning study approach to develop ‘stronger’ understandings of sustainability; and 4) the potential of variation theory to explain how individuals acquire understandings of sustainability. The empirical research is presented in three studies to address three main research objectives. The first research objective was ‘to identify the conceptualisations of sustainability currently being used in university undergraduate sustainable tourism courses internationally’. The first study, in Chapter III, identifies whether ‘strong sustainability’, sustainability skills and the SDGs are currently underpinning 60 international sustainable tourism courses. Chapter IV ‘explores the different ways in which tourism students, academics and industry practitioners currently conceptualise sustainability’ by conducting phenomenographic interviews with 20 participants. A continuum of less to more complex understandings of sustainability was then developed to identify qualitatively different ways of understanding sustainability. The third research objective was ‘to investigate alternate teaching and learning approaches that might encourage stronger conceptualisations of sustainability amongst undergraduate tourism students’. Chapter V, discusses how the continuum explored in Chapter IV was used in an Australian university sustainable tourism course, underpinned by variation theory, to implement a learning study to enhance students’ understandings of sustainability and the conceptual complexity of the term sustainability. The findings revealed that internationally, sustainable tourism courses do not include ‘very strong’ conceptualisations of sustainability, and that sustainability pedagogies (such as systems and holistic thinking) are not widely used. Phenomenographic interviews with (predominantly Australian-based) lecturers, students and industry workers initially revealed four qualitatively different ways of understanding sustainability ranging from weak to very strong understandings of sustainability. Whilst many tourism lecturers seemed to show understandings of moderate to strong sustainability, very few showed very strong sustainability conceptualisations. This implies that some tourism courses may potentially be designed and underpinned by a weak to moderate articulation of sustainability. These interviews also revealed that industry owners tended to demonstrate a much stronger sustainability understanding than tourism lecturers. Most industry owners had a longer-term focus and key motives centred on giving back to society and a ‘pay-it-forward’ attitude towards the environment. Further findings in the learning study revealed that variation theory offers a valuable teaching and learning strategy to help develop more complex conceptualisations of ‘very strong’ sustainability within a university tourism course. Based on these findings, a number of implications for theory and practice are examined. These include recommendations regarding the design of sustainable tourism courses such as strengthening the sustainability conceptualisations underpinning them; better integration of the SDGs; and the development of critical and systems thinking skills. The three studies also provide examples for use in practice. For example, in Chapter III, a questioning strategy is provided. The phenomenographic continuum in Chapter IV provides a teaching and learning tool for educators to incorporate into sustainability courses to help students’ understandings of the phenomena. Chapter V provides insight into how this continuum can be incorporated into a learning study and provides practical ways of using variation theory. By implementing the continuum into teaching and learning activities, both educators and industry can develop deeper and stronger conceptualisations of sustainability for the tourism industry. Limitations of the study are discussed, and recommendations put forward for future research. In addition, ways in which educational institutions and governments can use the findings of the study to enhance teaching and learning, both in the classroom and industry workplaces, are discussed. Such enhancements will provide a foundation of ‘strong sustainability’ mindsets within our future tourism industry, which in turn will contribute to the 2030 SDGs being achieved.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Davies, Simon;

    Achieving reductions in global anthropogenic emissions necessary to mitigate the worst effects of climate change will require significant reductions in energy demand. However, there are concerns that energy demand reductions involving lifestyle and behavioural changes might negatively impact peoples’ wellbeing. The work in this thesis studies the impacts of how people spend their time – commonly known as time-use – to try to understand whether this is the true, or whether energy demand could be reduced while improving wellbeing. Using the UK as a case study, this issue is examined by determining the energy use and wellbeing attributes of different activities and lifestyles, by modelling the impacts of shifts in time-use between activities, and by comparing the importance of three specific changes that might impact future energy use and wellbeing. Firstly, based upon existing literature it is identified that there is a need to better understand the combined energy and wellbeing impacts of different activities and lifestyles. Combining UK time-use and energy consumption data, the energy intensity, enjoyment and sociability of time is studied. Comparing these metrics for different activities suggests that since the most enjoyable (and in some cases sociable) activities are generally the least energy-intensive, acceptable (or popular) lifestyle changes might exist that reduce national energy use and improve wellbeing. However, studying changes between 2000 and 2015 shows that while the population’s time became less energy-intensive, there was little change in average enjoyment and a reduction in sociability. Segmenting the population by age reveals that an ageing population could present a challenge since energy use broadly increases with age-group while social contact reduces. However, comparing occupations highlights opportunities for specific actions that could improve wellbeing and reduce energy use, while regional differences suggest that wellbeing might be improved without increasing energy use. Having determined the energy intensity and wellbeing associated with different uses of time, the impacts of possible time-use changes are then studied. Acknowledging the difficulty in trying to predict how people might choose to re-allocate time in different situations, a sensitivity-based approach is used to study the impacts of a wide range of possible shifts in time between activities. The approach is then applied to explore the impacts of extreme lifestyle changes associated with COVID-19 lockdown measures in the UK and validated against real-world observations during the pandemic. While activity changes associated with lockdown measures reduce energy use, there are varying implications for peoples’ wellbeing, with the youngest appearing to be most negatively impacted but those able to work from home potentially benefiting. Although lockdown measures prevented some of the most enjoyable and sociable activities from happening, alternative activity changes could be supported in future that reduce energy use while improving wellbeing. Finally, time is used as a basis to compare the importance of different types of changes and help to prioritise actions. This is demonstrated by studying the combined impacts of three example changes – greater home working, changes in commuting transport modes and car intensity – on office workers’ energy use and wellbeing. The results show that working from home could have a greater impact upon office workers’ average energy use and enjoyment than changes to commuting modes, but that the social contact provided by the office could be difficult to replace. The study also demonstrates different ways that energy savings might be achieved through home working, shifts in commuting modes and changes to vehicle intensity. This approach could be used more widely to compare a broader range of changes, understand their interactions and different ways to achieve outcomes, and help to identify those changes that are most important to reduce energy use and improve wellbeing. The work presented in this thesis shows that time-use can be used as a basis to examine energy demand and wellbeing together. Using time-use to link these issues enables trade-offs or co-benefits due to different uses of time to be determined and allows rebound effects to be considered. The results suggest that reducing energy use can be achieved at the same time as improving wellbeing. The hope is that the approaches and findings presented in this thesis can provide a basis for wider discussion and a platform for future work to support climate change mitigation strategies that are positive for both the environment and society.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sikha Karki;

    Climate change is a pervasive global issue that threatens the livelihoods and wellbeing of billions living globally. Climate change is a risk multiplier impacting all ecosystems, society, and sectors of the economy. The agriculture sector is one such sector that is highly vulnerable to changes in climate. In a country like Nepal where rainfed agriculture is a dominant occupation and a key pillar of the country’s economy, climate change brings risks and negative consequences for on-farm production, farmers' livelihoods as well as on the country’s development. The impacts of climate change including rising temperatures, an increase in the frequency or intensity of extreme weather events such as drought, and shifts in the rainfall seasonality, can cause a decline in food production and threaten the quality of food supplies, leading to reduced food security. The rise in the global population will increase global demand for food which implies that agriculture needs to boost production and increase yields, among other things. The unprecedented risks posed by climate change potentially undermine the ability of farms and farm holders to grow adequate and quality food. The severity of these risks varies due to a range of underlying factors including low economic development, their location, existing biophysical and socioeconomic conditions, and institutional arrangements. While the impacts of climate change on food production as well as agricultural practices in Nepal have been documented, there is a dearth in scholarly literature that has assessed the impacts of climate change on household food security in Nepal incorporating farmers’ perspectives and in particular smallholder subsistence farmers. Furthermore, there is only modest literature that has examined geographical variations in those experiences and understandings. This PhD study aimed, therefore, to investigate the effects of climate change on agricultural practices and food security, with a focus on subsistence smallholder farmers in three main agro- ecological zones of Nepal known as The Mountains, Hills, and the Terai. The study aimed to respond to the primary research question: How are Nepalese farming communities being impacted by climate change and how are they responding to ensure their continued food security? To answer this main research, question the study posed the following secondary research questions: Q1. How is climate changing and how is it impacting subsistence agriculture? Q2. What are the farmers experiencing and what is their understanding? a. Are there gender differences in understanding and experiencing? Q3. What is the state of food insecurity among these farmers? a. How is it being impacted by climate change? Q4. What adaptation strategies have been adopted by smallholder farmers to address threats to agricultural practices and food security from climate change and other pressures? Both the qualitative and qualitative data were collected using multiple methods to address the identified research questions. Methods included a narrative literature review, systematic review, face to face interviews with farmers, individual interviews with key informants and focus groups with the women's group. Climate data on temperature between 1971-2013 and rainfall between 1967-2013 were analysed. Additionally, secondary data on crop yield from 1980 to 2016 were also analysed to gain a better empirical understanding of the relations between climate change and yield pattern and to triangulate and validate the findings from the interviews. Quantitative data on cereal crop yields and climate data were systematically tabulated and further statistically analysed using software R. This study employed the Bayesian approach to statistical modelling. Besides, this study undertook an integrated risk assessment of food insecurity using the Bayesian Belief Network model to reflect how the risk of food insecurity is influenced under two scenarios: (1) current climate conditions and (2) the influences of different adaptation strategies employed. NVivo was used for content analysis for qualitative data obtained from the key informant interview and focus group data and analysis of transcripts from farmers' structured interviews. The findings showed that agricultural practices have undergone various changes over the past 30 years. Climate change impacts were experienced by farmers in all three agro-ecological zones of Nepal. However, the impacts varied between these zones in terms of frequency and intensity. The effect of climate change was highly pronounced in the Mountains zone followed by the Hills and the Terai. The results confirmed that rural subsistence smallholder farmers dependent on rainfed agriculture are vulnerable to climate change impacts. Moreover, it disproportionately affects the poor farmers whose income hinges solely on agriculture and associated activities. Boosting agricultural production and empowering these smallholders is key to enhancing their food security. The experiences reported by farmers are well aligned with the trend of the climatic variables obtained from climate data analysis, highlighting the importance of perception-based survey in complementing climate research. The study demonstrated both the climatic and non-climatic factors are affecting agricultural practices as well as household food security of these farming communities. It is, therefore, difficult to isolate the influence of any of these factors. This was supported by the findings from the risk assessment undertaken by Bayesian modelling. Based on Bayesian modelling, the smallholder farmers mainly at the Mountain zone were at the risk of food insecurity. The measures to increase the adaptive capacity of these smallholders were found to help them manage the risk of food insecurity. Addressing the complicated and multifaceted concerns of climate change and food security needs multidisciplinary and multisectoral adaptation interventions acknowledging underlying biophysical, social, economic, geographical and environmental circumstances. Farmers have taken some actions to adapt and reduce the worsening impacts of climate change. Nevertheless, farmers encountered several barriers in effectively adapting to climate change. This study concluded there is an urgent need for a transformative level of intervention that warrants a coordinated action and collaboration between relevant stakeholders working in this field, including governments and non-governmental organizations, to target the most vulnerable and the needy smallholder farmers addressing the constraints and pressures they face. Policy and decision-makers should work extensively and sensitively with smallholders to ensure the maintenance of their livelihood and to guarantee their food security. Combining local and scientific knowledge is needed to help direct research and tailor adaptation solutions that meet local conditions and needs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
245 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Li, Ru; Perdana, Sigit; Vielle, Marc;

    This dataset contains the underlying data for the following publication: Li, R., Perdana, S., Vielle, M. (2021), Potential integration of Chinese and European emissions trading market: welfare distribution analysis, Mitigation and Adaptation Strategies for Global Change, 26:22 https://doi.org/10.1007/s11027-021-09960-7.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;

    Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This is a repository of global and regional human population data collected from: the databases of scenarios assessed by the Intergovernmental Panel on Climate Change (Sixth Assessment Report, Special Report on 1.5 C; Fifth Assessment Report), multi-national databases of population projections (World Bank, International Database, United Nation population projections), and other very long-term population projections (Resources for the Future). More specifically, it contains: - in `other_pop_data` folder files from World Bank, the International Database from the US Census, and from IHME - in the `SSP` folder, the Shared Socioeconomic Pathways, as in the version 2.0 downloaded from IIASA and as in the version 3.0 downloaded from IIASA workspace - in the `UN` folder, the demographic projections from UN - `IAMstat.xlsx`, an overview file of the metadata accompanying the scenarios present in the IPCC databases - `RFF.csv`, an overview file containing the population projections obtained by Resources For the Future '- the remaining `.csv` files with names `AR6#`, `AR5#`, `IAMC15#` contain the IPCC scenarios assessed by the IPCC for preparing the IPCC assessment reports. They can be downloaded from AR5, SR 1.5, and AR6 This data in intended to be downloaded for use together with the package downloadable here. The dataset was used as a supporting material for the paper "Underestimating demographic uncertainties in the synthesis process of the IPCC" accepted on npj Climate Action (DOI : 10.1038/s44168-024-00152-y).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility12
    visibilityviews12
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Climate change is worsening the number, frequency and duration of natural hazards across the globe, making disaster risk reduction and resilience building among the most pressing challenges ahead. According to UN-Habitat, informal settlements are where the impacts of climate change are the most acute in urban areas and strengthening resilience in these neighbourhoods represents a very complex yet urgent challenge. Today, urban areas are home to 56 per cent of the world’s population and this figure is projected to increase to 60 per cent by 2030 and 68 per cent by 2050, with 90 per cent of the growth by 2050 expected to occur in less developed economies. In these countries, population growth and displacement (including climate-driven migrations) will lead to rapid and unplanned urbanisation forcing a growing number of people into informal settlements. Currently, one billion people live in informal settlements, mostly in Asia, Sub-Saharan Africa and Latin America and this figure is expected to grow to 3 billion in 2050. Horizon 2020 MSCA-RISE, Grant Agreement #873119

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Jo-Anne Ferreira; Charles Arcodia; Debbie Cotterell;

    An important outcome of a university business education is to shape individuals who are capable of working in and operating businesses that deliver economically profitable, socially responsible and ecologically viable services. In preparing future sustainable tourism workers, universities also need to design curricula that develop students’ skills in critical thinking and acting with a sense of ethics and empathy. Research evidence indicates, however, that students often graduate without these skills. A potential reason for this is the design of tourism curricula based on weaker conceptualisations of sustainability (e.g. triple bottom line) as opposed to stronger conceptualisations of sustainability (more holistic and inclusive approaches). Another possible reason could be that educators are not successfully cultivating students’ abilities to think in more complex ways about sustainability nor are they adequately acknowledging the ways in which their students make sense of a complex concept such as sustainability. To add to the complexity of the sustainability phenomenon, there is growing international pressure on the tourism industry by the United Nations (UN) to work towards achieving the 17 global sustainable development goals (SDGs) by 2030. Despite recognition that tourism can help contribute towards the SDGs, a UN report provides evidence that tourism policymakers are not actively and sufficiently engaging with the SDGs. The UN’s recognition of the tourism industry’s ability to advance the SDGS through economic growth (SDG 8) is further problematic, even if this is seen as sustainable economic growth. The term ‘sustainable development’ has long been contested as a weaker form of sustainability due to its progrowth and development emphasis. Given the current global overtourism crisis, it seems more important than ever that universities pay attention to how sustainable tourism is being interpreted and implemented. This is necessary if educators are to truly encourage stronger sustainability mindsets in future tourism workers and change makers. Therefore, the overarching aim of this thesis is to explore how conceptualisations of strong sustainability amongst university students can be strengthened. This study is the first to explore the usefulness of variation theory in strengthening conceptualisations of strong sustainability amongst university tourism students. It provides the tourism literature with evidence of: 1) the conceptualisation of sustainability currently being integrated into undergraduate tourism courses by universities internationally; 2) the benefits of phenomenography as a research approach for studying qualitative difference in understanding concepts such as sustainability and sustainable tourism; 3) the viability of using a learning study approach to develop ‘stronger’ understandings of sustainability; and 4) the potential of variation theory to explain how individuals acquire understandings of sustainability. The empirical research is presented in three studies to address three main research objectives. The first research objective was ‘to identify the conceptualisations of sustainability currently being used in university undergraduate sustainable tourism courses internationally’. The first study, in Chapter III, identifies whether ‘strong sustainability’, sustainability skills and the SDGs are currently underpinning 60 international sustainable tourism courses. Chapter IV ‘explores the different ways in which tourism students, academics and industry practitioners currently conceptualise sustainability’ by conducting phenomenographic interviews with 20 participants. A continuum of less to more complex understandings of sustainability was then developed to identify qualitatively different ways of understanding sustainability. The third research objective was ‘to investigate alternate teaching and learning approaches that might encourage stronger conceptualisations of sustainability amongst undergraduate tourism students’. Chapter V, discusses how the continuum explored in Chapter IV was used in an Australian university sustainable tourism course, underpinned by variation theory, to implement a learning study to enhance students’ understandings of sustainability and the conceptual complexity of the term sustainability. The findings revealed that internationally, sustainable tourism courses do not include ‘very strong’ conceptualisations of sustainability, and that sustainability pedagogies (such as systems and holistic thinking) are not widely used. Phenomenographic interviews with (predominantly Australian-based) lecturers, students and industry workers initially revealed four qualitatively different ways of understanding sustainability ranging from weak to very strong understandings of sustainability. Whilst many tourism lecturers seemed to show understandings of moderate to strong sustainability, very few showed very strong sustainability conceptualisations. This implies that some tourism courses may potentially be designed and underpinned by a weak to moderate articulation of sustainability. These interviews also revealed that industry owners tended to demonstrate a much stronger sustainability understanding than tourism lecturers. Most industry owners had a longer-term focus and key motives centred on giving back to society and a ‘pay-it-forward’ attitude towards the environment. Further findings in the learning study revealed that variation theory offers a valuable teaching and learning strategy to help develop more complex conceptualisations of ‘very strong’ sustainability within a university tourism course. Based on these findings, a number of implications for theory and practice are examined. These include recommendations regarding the design of sustainable tourism courses such as strengthening the sustainability conceptualisations underpinning them; better integration of the SDGs; and the development of critical and systems thinking skills. The three studies also provide examples for use in practice. For example, in Chapter III, a questioning strategy is provided. The phenomenographic continuum in Chapter IV provides a teaching and learning tool for educators to incorporate into sustainability courses to help students’ understandings of the phenomena. Chapter V provides insight into how this continuum can be incorporated into a learning study and provides practical ways of using variation theory. By implementing the continuum into teaching and learning activities, both educators and industry can develop deeper and stronger conceptualisations of sustainability for the tourism industry. Limitations of the study are discussed, and recommendations put forward for future research. In addition, ways in which educational institutions and governments can use the findings of the study to enhance teaching and learning, both in the classroom and industry workplaces, are discussed. Such enhancements will provide a foundation of ‘strong sustainability’ mindsets within our future tourism industry, which in turn will contribute to the 2030 SDGs being achieved.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Davies, Simon;

    Achieving reductions in global anthropogenic emissions necessary to mitigate the worst effects of climate change will require significant reductions in energy demand. However, there are concerns that energy demand reductions involving lifestyle and behavioural changes might negatively impact peoples’ wellbeing. The work in this thesis studies the impacts of how people spend their time – commonly known as time-use – to try to understand whether this is the true, or whether energy demand could be reduced while improving wellbeing. Using the UK as a case study, this issue is examined by determining the energy use and wellbeing attributes of different activities and lifestyles, by modelling the impacts of shifts in time-use between activities, and by comparing the importance of three specific changes that might impact future energy use and wellbeing. Firstly, based upon existing literature it is identified that there is a need to better understand the combined energy and wellbeing impacts of different activities and lifestyles. Combining UK time-use and energy consumption data, the energy intensity, enjoyment and sociability of time is studied. Comparing these metrics for different activities suggests that since the most enjoyable (and in some cases sociable) activities are generally the least energy-intensive, acceptable (or popular) lifestyle changes might exist that reduce national energy use and improve wellbeing. However, studying changes between 2000 and 2015 shows that while the population’s time became less energy-intensive, there was little change in average enjoyment and a reduction in sociability. Segmenting the population by age reveals that an ageing population could present a challenge since energy use broadly increases with age-group while social contact reduces. However, comparing occupations highlights opportunities for specific actions that could improve wellbeing and reduce energy use, while regional differences suggest that wellbeing might be improved without increasing energy use. Having determined the energy intensity and wellbeing associated with different uses of time, the impacts of possible time-use changes are then studied. Acknowledging the difficulty in trying to predict how people might choose to re-allocate time in different situations, a sensitivity-based approach is used to study the impacts of a wide range of possible shifts in time between activities. The approach is then applied to explore the impacts of extreme lifestyle changes associated with COVID-19 lockdown measures in the UK and validated against real-world observations during the pandemic. While activity changes associated with lockdown measures reduce energy use, there are varying implications for peoples’ wellbeing, with the youngest appearing to be most negatively impacted but those able to work from home potentially benefiting. Although lockdown measures prevented some of the most enjoyable and sociable activities from happening, alternative activity changes could be supported in future that reduce energy use while improving wellbeing. Finally, time is used as a basis to compare the importance of different types of changes and help to prioritise actions. This is demonstrated by studying the combined impacts of three example changes – greater home working, changes in commuting transport modes and car intensity – on office workers’ energy use and wellbeing. The results show that working from home could have a greater impact upon office workers’ average energy use and enjoyment than changes to commuting modes, but that the social contact provided by the office could be difficult to replace. The study also demonstrates different ways that energy savings might be achieved through home working, shifts in commuting modes and changes to vehicle intensity. This approach could be used more widely to compare a broader range of changes, understand their interactions and different ways to achieve outcomes, and help to identify those changes that are most important to reduce energy use and improve wellbeing. The work presented in this thesis shows that time-use can be used as a basis to examine energy demand and wellbeing together. Using time-use to link these issues enables trade-offs or co-benefits due to different uses of time to be determined and allows rebound effects to be considered. The results suggest that reducing energy use can be achieved at the same time as improving wellbeing. The hope is that the approaches and findings presented in this thesis can provide a basis for wider discussion and a platform for future work to support climate change mitigation strategies that are positive for both the environment and society.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sikha Karki;

    Climate change is a pervasive global issue that threatens the livelihoods and wellbeing of billions living globally. Climate change is a risk multiplier impacting all ecosystems, society, and sectors of the economy. The agriculture sector is one such sector that is highly vulnerable to changes in climate. In a country like Nepal where rainfed agriculture is a dominant occupation and a key pillar of the country’s economy, climate change brings risks and negative consequences for on-farm production, farmers' livelihoods as well as on the country’s development. The impacts of climate change including rising temperatures, an increase in the frequency or intensity of extreme weather events such as drought, and shifts in the rainfall seasonality, can cause a decline in food production and threaten the quality of food supplies, leading to reduced food security. The rise in the global population will increase global demand for food which implies that agriculture needs to boost production and increase yields, among other things. The unprecedented risks posed by climate change potentially undermine the ability of farms and farm holders to grow adequate and quality food. The severity of these risks varies due to a range of underlying factors including low economic development, their location, existing biophysical and socioeconomic conditions, and institutional arrangements. While the impacts of climate change on food production as well as agricultural practices in Nepal have been documented, there is a dearth in scholarly literature that has assessed the impacts of climate change on household food security in Nepal incorporating farmers’ perspectives and in particular smallholder subsistence farmers. Furthermore, there is only modest literature that has examined geographical variations in those experiences and understandings. This PhD study aimed, therefore, to investigate the effects of climate change on agricultural practices and food security, with a focus on subsistence smallholder farmers in three main agro- ecological zones of Nepal known as The Mountains, Hills, and the Terai. The study aimed to respond to the primary research question: How are Nepalese farming communities being impacted by climate change and how are they responding to ensure their continued food security? To answer this main research, question the study posed the following secondary research questions: Q1. How is climate changing and how is it impacting subsistence agriculture? Q2. What are the farmers experiencing and what is their understanding? a. Are there gender differences in understanding and experiencing? Q3. What is the state of food insecurity among these farmers? a. How is it being impacted by climate change? Q4. What adaptation strategies have been adopted by smallholder farmers to address threats to agricultural practices and food security from climate change and other pressures? Both the qualitative and qualitative data were collected using multiple methods to address the identified research questions. Methods included a narrative literature review, systematic review, face to face interviews with farmers, individual interviews with key informants and focus groups with the women's group. Climate data on temperature between 1971-2013 and rainfall between 1967-2013 were analysed. Additionally, secondary data on crop yield from 1980 to 2016 were also analysed to gain a better empirical understanding of the relations between climate change and yield pattern and to triangulate and validate the findings from the interviews. Quantitative data on cereal crop yields and climate data were systematically tabulated and further statistically analysed using software R. This study employed the Bayesian approach to statistical modelling. Besides, this study undertook an integrated risk assessment of food insecurity using the Bayesian Belief Network model to reflect how the risk of food insecurity is influenced under two scenarios: (1) current climate conditions and (2) the influences of different adaptation strategies employed. NVivo was used for content analysis for qualitative data obtained from the key informant interview and focus group data and analysis of transcripts from farmers' structured interviews. The findings showed that agricultural practices have undergone various changes over the past 30 years. Climate change impacts were experienced by farmers in all three agro-ecological zones of Nepal. However, the impacts varied between these zones in terms of frequency and intensity. The effect of climate change was highly pronounced in the Mountains zone followed by the Hills and the Terai. The results confirmed that rural subsistence smallholder farmers dependent on rainfed agriculture are vulnerable to climate change impacts. Moreover, it disproportionately affects the poor farmers whose income hinges solely on agriculture and associated activities. Boosting agricultural production and empowering these smallholders is key to enhancing their food security. The experiences reported by farmers are well aligned with the trend of the climatic variables obtained from climate data analysis, highlighting the importance of perception-based survey in complementing climate research. The study demonstrated both the climatic and non-climatic factors are affecting agricultural practices as well as household food security of these farming communities. It is, therefore, difficult to isolate the influence of any of these factors. This was supported by the findings from the risk assessment undertaken by Bayesian modelling. Based on Bayesian modelling, the smallholder farmers mainly at the Mountain zone were at the risk of food insecurity. The measures to increase the adaptive capacity of these smallholders were found to help them manage the risk of food insecurity. Addressing the complicated and multifaceted concerns of climate change and food security needs multidisciplinary and multisectoral adaptation interventions acknowledging underlying biophysical, social, economic, geographical and environmental circumstances. Farmers have taken some actions to adapt and reduce the worsening impacts of climate change. Nevertheless, farmers encountered several barriers in effectively adapting to climate change. This study concluded there is an urgent need for a transformative level of intervention that warrants a coordinated action and collaboration between relevant stakeholders working in this field, including governments and non-governmental organizations, to target the most vulnerable and the needy smallholder farmers addressing the constraints and pressures they face. Policy and decision-makers should work extensively and sensitively with smallholders to ensure the maintenance of their livelihood and to guarantee their food security. Combining local and scientific knowledge is needed to help direct research and tailor adaptation solutions that meet local conditions and needs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert