- home
- Search
Filters
Clear All- Energy Research
- Restricted
- Embargo
- 12. Responsible consumption
- 13. Climate action
- 11. Sustainability
- GB
- AU
- FI
- Energy Research
- Restricted
- Embargo
- 12. Responsible consumption
- 13. Climate action
- 11. Sustainability
- GB
- AU
- FI
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Springer Science and Business Media LLC Di Pierro, Erica Adele; Mosca, Elena; Rocchini, Duccio; Binelli, G.; Neale, David Bryan; La Porta, Nicola;handle: 11572/198119 , 11383/2031691 , 10449/27630 , 11585/720666
Forest trees dominate many Alpine landscapes that are currently exposed to changing climate. Norway spruce is one of the most important conifer species of the Italian Alps, and natural populations are found across steep environmental gradients with large differences in temperature and moisture availability. This study seeks to determine and quantify patterns of genetic diversity in natural populations toward understanding adaptive responses to changing climate. Across the Italian species range, 24 natural stands were sampled with a major focus on the Eastern Italian Alps. Sampled trees were genotyped for 384 selected single nucleotide polymorphisms (SNPs) from 285 genes. A wide array of potential candidate genes was tested for correlation with climatic parameters. To minimize false-positive association between genotype and climate, population structure was investigated. Pairwise F ST estimates between sampled populations ranged between 0.000 and 0.075, with the highest values involving the two disjoint populations, Valdieri, on the western Italian Alps, and Campolino, the most southern population on the Apennines. Despite considerable genetic admixture among populations, both Bayesian and multivariate approach identified four genetic clusters. Selection scans revealed five F ST outliers, and the environmental association analysis detected ten SNPs associated to one or more climatic variables. Overall, 13 potentially adaptive loci were identified, three of which have been reported in a previous study on the same species conducted on a broader geographical scale. In our study, precipitation, more than temperature, was often associated with genotype; therefore, it appears as the most important environmental variable associated with the high sensitivity of Norway spruce to soil water supply. These findings provide relevant information for understanding and quantifying climate change effects on this species and its ability to genetically adapt.
IRIS - Institutional... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.28 selected citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS - Institutional... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Panteli, Mathaios; Mancarella, Pierluigi;Electrical power systems have been traditionally designed to be reliable during normal conditions and abnormal but foreseeable contingencies. However, withstanding unexpected and less frequent severe situations still remains a significant challenge. As a critical infrastructure and in the face of climate change, power systems are more and more expected to be resilient to highimpact low-probability events determined by extreme weather phenomena. However, resilience is an emerging concept, and, as such, it has not yet been adequately explored in spite of its growing interest. On these bases, this paper provides a conceptual framework for gaining insights into the resilience of power systems, with focus on the impact of severe weather events. As quantifying the effect of weather requires a stochastic approach for capturing its random nature and impact on the different system components, a novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience. The concept of fragility curves is used for applying weather-and time-dependent failure probabilities to system's components. The resilience of the critical power infrastructure is modeled and assessed within a context of system-of-systems that also include human response as a key dimension. This is illustrated using the IEEE 6-bus test system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.408 selected citations 408 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2006Publisher:Elsevier BV Authors: Pikaar, I.; Koelmans, A.A.; van Noort, P.C.M.;pmid: 16782170
Sorption to "hard carbon" (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for sorption of 12 compounds onto 12 ACs and one charcoal, at different temperatures (79 isotherms in total). A statistical analysis, accounting for differences in the number of fitting parameters, demonstrates that the dual Langmuir equation is in general superior and/or preferable to the single and triple Langmuir equation, the Freundlich equation, a Polanyi-Dubinin-Manes equation, and the Toth equation. Consequently, the analysis suggests the presence of two types of adsorption sites: a high-energy (HE) type of site and a low-energy (LE) type of site. Maximum adsorption capacities for the HE domain decreased with temperature while those for the LE domain increased. Average Gibbs free energies for adsorption from the hypothetical pure liquid state at 298 K were fairly constant at -15+/-4 and -5+/-4 kJ mol(-1) for the HE and LE domain, respectively.
Research@WUR arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.58 selected citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Wiley Robroek, B.J.M.; Schouten, M.G.C.; Limpens, J.; Berendse, F.; Poorter, H.;AbstractSphagnum cuspidatum,S. magellanicumandS. rubellumare three co‐occurring peat mosses, which naturally have a different distribution along the microtopographical gradient of the surface of peatlands. We set out an experiment to assess the interactive effects of water table (low: −10 cm and high: −1 cm) and precipitation (present or absent) on the CO2assimilation and evaporation of these species over a 23‐day period. Additionally, we measured which sections of the moss layer were responsible for light absorption and bulk carbon uptake. Thereafter, we investigated how water content affected carbon uptake by the mosses. Our results show that at high water table, CO2assimilation of all species gradually increased over time, irrespective of the precipitation. At low water table, net CO2assimilation of all species declined over time, with the earliest onset and highest rate of decline forS. cuspidatum. Precipitation compensated for reduced water tables and positively affected the carbon uptake of all species. Almost all light absorption occurred in the first centimeter of theSphagnumvegetation and so did net CO2assimilation. CO2assimilation rate showed species‐specific relationships with capitulum water content, with narrow but contrasting optima forS. cuspidatumandS. rubellum. Assimilation byS. magellanicumwas constant at a relatively low rate over a broad range of capitulum water contents. Our study indicates that prolonged drought may alter the competitive balance between species, favoring hummock species over hollow species. Moreover, this study shows that precipitation is at least equally important as water table drawdown and should be taken into account in predictions about the fate of peatlands with respect to climate change.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.104 selected citations 104 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Authors: Allen, B.R.; Keegan, D.; Elbersen, B.S.;doi: 10.1002/bbb.1359
AbstractDemands from land are increasing within the EU. Targets set out under the Renewable Energy Directive (RED) are driving the production of energetic biomass for use within the energy sector and, at the same time, changing populations, diets, and societal preferences are leading to increased demands for other types of biomass including food, feed, and fiber. As an inherently multifunctional natural resource, land is already meeting many of these demands as well as providing a wider range of services to society including clean and reliable water, carbon sequestration, and cultural services. However, as demands from land increase, its continued ability to support a range of different sectors sustainably is called into question.This review considers the EU demand for bioenergy and the biomass used to produce it, to 2020, within the wider land‐use context. It reflects on the different demands facing the EU and global land resources beyond those emanating from the energy sector, their drivers, and the implications for land resources as a central element in the development of sustainable biomass supply chains in the EU. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Research@WUR arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.15 selected citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:EC | FutureMARESEC| FutureMARESDoxa, Aggeliki; Almpanidou, Vasiliki; Katsanevakis, Stelios; Queirós, Ana M.; Kaschner, Kristin; Garilao, Cristina; Kesner‐Reyes, Kathleen; Mazaris, Antonios D.;doi: 10.1111/gcb.16268
pmid: 35583810
AbstractGiven the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three‐dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth‐specific prioritization analysis to inform the design of protected areas, further including metrics of climate‐driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three‐dimensional, climate‐smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two‐dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger‐scale impacts associated with climate change.
OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 selected citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2022Publisher:Springer International Publishing Authors: Mugabe, Paschal Arsein; Mbah, Marcellus F.; Apollo, Abigael;There have been many efforts globally toward fighting climate change; including international agreements, conferences, research, policies, forums, etc. In addition to these efforts, climate change education has recently emerged as an essential capacity-building tool to curb the climate crisis. However, development practitioners from the Global South have cited limitations with climate change education due to the dominance of Eurocentric epistemologies over indigenous knowledge (IK) approaches. This study therefore advocates for the integration of indigenous knowledge into climate change education in Tanzania for achieving a sustainable environment. Seventy documents, including peer-reviewed papers, reports from corporate institutions, policy briefs, proceedings and other grey literature were reviewed. We establish that IK systems are not integrated into CCE in Tanzania. However, we find opportunities for integration due to the evidence of the existing CCE efforts and potential complementary indigenous practices. By identifying, documenting, and validating indigenous knowledge and merging this knowledge with scientific insights, the fostering of an integrated approach to combat the enduring effects of climate change can be evidenced.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryPart of book or chapter of book . 2022Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPure University of ManchesterPart of book or chapter of book . 2022Data sources: Pure University of Manchesteradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 selected citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryPart of book or chapter of book . 2022Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPure University of ManchesterPart of book or chapter of book . 2022Data sources: Pure University of Manchesteradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 26 Apr 2023Publisher:Apollo - University of Cambridge Repository Authors: Corsi, Giulio;doi: 10.17863/cam.96384
Over the past several years, online disinformation and misinformation concerning climate change have gained substantive attention within the scientific community. However, while the dynamics that drive the circulation of false online information have been analysed extensively, it remains unclear whether (and how) this phenomenon can be counteracted. This research project analyses the emerging role of bottom-up mobilisations as a form of noise-reduction, thereby examining how social movements may deploy peer-produced communication narra- tives to counteract the circulation of online disinformation and misinformation relating to climate change. To investigate this communication dynamic, this research applies techniques from computational social sciences to an original dataset of ≈ 250k Facebook posts produced by two movements that best embody this novel and innovative generation of radical envi- ronmental activism: Extinction Rebellion and Fridays for Future. The central thesis of this project forwards two original contributions to the fields of climate change communication and social movement studies. First, it analyses the emergence of a new generation of radical climate change movements and the significance of this new development in climate activism (Chapter II). Second, it offers interdisciplinary empirical evidence on how radical climate movements can act as a bottom-up force for what I term ‘epistemic activism’. It presents a theoretical framework where activist-led, peer-produced communication can provide a coun- tering force to both vertical disinformation and horizontal misinformation. It quantitatively analyses two channels through which these forms of false information can be opposed. For reducing vertical disinformation, this work assesses the use of naming and shaming against information polluters (Chapter III), while for horizontal misinformation, it evaluates the dissemination of scientific counter-narratives (Chapter IV). Ultimately, this thesis shows that the two movements under analysis engage extensively in epistemic activism, with great potential to influence the online climate change debate positively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 selected citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mahmoud Murtala Farouq; Carlos Jimenez-Bescos; Saffa Riffat; Parham A Mirzaei;The increasing demand for temporary housing in many developing countries necessitate the use of sustainable and affordable construction options. Earthbag units have the potential to be integrated into such housings as they are inexpensive, sustainable, and straightforward material options for building structures. Nevertheless, due to their thermal characteristics, earthbag units cannot provide a thermally comfortable environment. Thus, the present study focuses on developing an environmentally and sustainable earthbag unit integrated with phase change materials (PCM) to convert severely harsh indoor spaces to moderately harsh ones. For the design and development of earthbag blocks, several units are developed with varying amounts of PCM encapsulated in expanded perlite (EP) and expanded graphite (EG) within each unit, including block A (reference), Block B (PCM 2.2% of sample weight), C (4.3%), and D (6.5%). An experimental study is then conducted to understand the microstructural properties of the embedded PCM composite in soil. Following this initial study, practical differential techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), thermal conductivity, and Oozing circle test, have been employed over the developed units to measure their thermal characteristics. Test results from DSC and TGA show good thermal stability of PCM and PCM composites, while SEM results indicated that PCM is well distributed within the pores of EP at 50%EP of the PCM weight. The study found the average indoor surface temperatures by block B, block C, and block D to drop compared to the reference block about 1.2 °C, 3.3 °C, and 4.1 °C, respectively. This clearly shows the benefit of integrating phase change materials in an earthbag unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.3 selected citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2011Publisher:Wiley Funded by:EC | WISEREC| WISERDong, Xuhui; Bennion, Helen; Maberly, Stephen C.; Sayer, Carl D.; Simpson, Gavin L.; Battarbee, Richard W.;Summary1. A long‐term monitoring programme on phytoplankton and physicochemical characteristics of Esthwaite Water (England) that started in 1945 provides a rare opportunity to understand the effects of climate and nutrients on a lake ecosystem.2. Monitoring records show that the lake experienced nutrient enrichment from the early 1970s, particularly after 1975, associated with inputs from a local sewage treatment plant, resulting in marked increases in concentration of soluble reactive phosphorus (SRP). Climatic variables, such as air temperature (AirT) and rainfall, exhibit high variability with increasing trends after 1975.3. Diatom analyses of an integrated 210Pb‐dated lake sediment core from Esthwaite Water, covering the period from 1945 to 2004, showed that fossil diatoms exhibited distinct compositional change in response to nutrient enrichment.4. Redundancy analysis (RDA) based on diatom and environmental data sets over the past 60 years showed that the most important variables explaining diatom species composition were winter concentrations of SRP, followed by AirT, independently explaining 22% and 8% of the diatom variance, respectively.5. Additive models showed that winter SRP was the most important factor controlling the diatom assemblages for the whole monitoring period. AirT had little effect on the diatom assemblages when nutrient levels were low prior to 1975. With the increase in nutrient availability during the eutrophication phase after 1975, climate became more important in regulating the diatom community, although SRP was still the major controlling factor.6. The relative effects of climate and nutrients on diatom communities vary depending on the timescale. RDA and additive model revealed that climate contributed little to diatom dynamics at an annual or decadal scale.7. The combination of monitoring and palaeolimnological records employed here offers the opportunity to explore how nutrients and climate have affected a lake ecosystem over a range of timescales. This dual approach can potentially be extended to much longer timescales (e.g. centuries), where long‐term, reliable observational records exist.
PURE Aarhus Universi... arrow_drop_down Freshwater BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.13...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.60 selected citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Freshwater BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.13...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Springer Science and Business Media LLC Di Pierro, Erica Adele; Mosca, Elena; Rocchini, Duccio; Binelli, G.; Neale, David Bryan; La Porta, Nicola;handle: 11572/198119 , 11383/2031691 , 10449/27630 , 11585/720666
Forest trees dominate many Alpine landscapes that are currently exposed to changing climate. Norway spruce is one of the most important conifer species of the Italian Alps, and natural populations are found across steep environmental gradients with large differences in temperature and moisture availability. This study seeks to determine and quantify patterns of genetic diversity in natural populations toward understanding adaptive responses to changing climate. Across the Italian species range, 24 natural stands were sampled with a major focus on the Eastern Italian Alps. Sampled trees were genotyped for 384 selected single nucleotide polymorphisms (SNPs) from 285 genes. A wide array of potential candidate genes was tested for correlation with climatic parameters. To minimize false-positive association between genotype and climate, population structure was investigated. Pairwise F ST estimates between sampled populations ranged between 0.000 and 0.075, with the highest values involving the two disjoint populations, Valdieri, on the western Italian Alps, and Campolino, the most southern population on the Apennines. Despite considerable genetic admixture among populations, both Bayesian and multivariate approach identified four genetic clusters. Selection scans revealed five F ST outliers, and the environmental association analysis detected ten SNPs associated to one or more climatic variables. Overall, 13 potentially adaptive loci were identified, three of which have been reported in a previous study on the same species conducted on a broader geographical scale. In our study, precipitation, more than temperature, was often associated with genotype; therefore, it appears as the most important environmental variable associated with the high sensitivity of Norway spruce to soil water supply. These findings provide relevant information for understanding and quantifying climate change effects on this species and its ability to genetically adapt.
IRIS - Institutional... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.28 selected citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS - Institutional... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Panteli, Mathaios; Mancarella, Pierluigi;Electrical power systems have been traditionally designed to be reliable during normal conditions and abnormal but foreseeable contingencies. However, withstanding unexpected and less frequent severe situations still remains a significant challenge. As a critical infrastructure and in the face of climate change, power systems are more and more expected to be resilient to highimpact low-probability events determined by extreme weather phenomena. However, resilience is an emerging concept, and, as such, it has not yet been adequately explored in spite of its growing interest. On these bases, this paper provides a conceptual framework for gaining insights into the resilience of power systems, with focus on the impact of severe weather events. As quantifying the effect of weather requires a stochastic approach for capturing its random nature and impact on the different system components, a novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience. The concept of fragility curves is used for applying weather-and time-dependent failure probabilities to system's components. The resilience of the critical power infrastructure is modeled and assessed within a context of system-of-systems that also include human response as a key dimension. This is illustrated using the IEEE 6-bus test system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.408 selected citations 408 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2006Publisher:Elsevier BV Authors: Pikaar, I.; Koelmans, A.A.; van Noort, P.C.M.;pmid: 16782170
Sorption to "hard carbon" (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for sorption of 12 compounds onto 12 ACs and one charcoal, at different temperatures (79 isotherms in total). A statistical analysis, accounting for differences in the number of fitting parameters, demonstrates that the dual Langmuir equation is in general superior and/or preferable to the single and triple Langmuir equation, the Freundlich equation, a Polanyi-Dubinin-Manes equation, and the Toth equation. Consequently, the analysis suggests the presence of two types of adsorption sites: a high-energy (HE) type of site and a low-energy (LE) type of site. Maximum adsorption capacities for the HE domain decreased with temperature while those for the LE domain increased. Average Gibbs free energies for adsorption from the hypothetical pure liquid state at 298 K were fairly constant at -15+/-4 and -5+/-4 kJ mol(-1) for the HE and LE domain, respectively.
Research@WUR arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.58 selected citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Wiley Robroek, B.J.M.; Schouten, M.G.C.; Limpens, J.; Berendse, F.; Poorter, H.;AbstractSphagnum cuspidatum,S. magellanicumandS. rubellumare three co‐occurring peat mosses, which naturally have a different distribution along the microtopographical gradient of the surface of peatlands. We set out an experiment to assess the interactive effects of water table (low: −10 cm and high: −1 cm) and precipitation (present or absent) on the CO2assimilation and evaporation of these species over a 23‐day period. Additionally, we measured which sections of the moss layer were responsible for light absorption and bulk carbon uptake. Thereafter, we investigated how water content affected carbon uptake by the mosses. Our results show that at high water table, CO2assimilation of all species gradually increased over time, irrespective of the precipitation. At low water table, net CO2assimilation of all species declined over time, with the earliest onset and highest rate of decline forS. cuspidatum. Precipitation compensated for reduced water tables and positively affected the carbon uptake of all species. Almost all light absorption occurred in the first centimeter of theSphagnumvegetation and so did net CO2assimilation. CO2assimilation rate showed species‐specific relationships with capitulum water content, with narrow but contrasting optima forS. cuspidatumandS. rubellum. Assimilation byS. magellanicumwas constant at a relatively low rate over a broad range of capitulum water contents. Our study indicates that prolonged drought may alter the competitive balance between species, favoring hummock species over hollow species. Moreover, this study shows that precipitation is at least equally important as water table drawdown and should be taken into account in predictions about the fate of peatlands with respect to climate change.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.104 selected citations 104 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Authors: Allen, B.R.; Keegan, D.; Elbersen, B.S.;doi: 10.1002/bbb.1359
AbstractDemands from land are increasing within the EU. Targets set out under the Renewable Energy Directive (RED) are driving the production of energetic biomass for use within the energy sector and, at the same time, changing populations, diets, and societal preferences are leading to increased demands for other types of biomass including food, feed, and fiber. As an inherently multifunctional natural resource, land is already meeting many of these demands as well as providing a wider range of services to society including clean and reliable water, carbon sequestration, and cultural services. However, as demands from land increase, its continued ability to support a range of different sectors sustainably is called into question.This review considers the EU demand for bioenergy and the biomass used to produce it, to 2020, within the wider land‐use context. It reflects on the different demands facing the EU and global land resources beyond those emanating from the energy sector, their drivers, and the implications for land resources as a central element in the development of sustainable biomass supply chains in the EU. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Research@WUR arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.15 selected citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:EC | FutureMARESEC| FutureMARESDoxa, Aggeliki; Almpanidou, Vasiliki; Katsanevakis, Stelios; Queirós, Ana M.; Kaschner, Kristin; Garilao, Cristina; Kesner‐Reyes, Kathleen; Mazaris, Antonios D.;doi: 10.1111/gcb.16268
pmid: 35583810
AbstractGiven the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three‐dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth‐specific prioritization analysis to inform the design of protected areas, further including metrics of climate‐driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three‐dimensional, climate‐smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two‐dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger‐scale impacts associated with climate change.
OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 selected citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2022Publisher:Springer International Publishing Authors: Mugabe, Paschal Arsein; Mbah, Marcellus F.; Apollo, Abigael;There have been many efforts globally toward fighting climate change; including international agreements, conferences, research, policies, forums, etc. In addition to these efforts, climate change education has recently emerged as an essential capacity-building tool to curb the climate crisis. However, development practitioners from the Global South have cited limitations with climate change education due to the dominance of Eurocentric epistemologies over indigenous knowledge (IK) approaches. This study therefore advocates for the integration of indigenous knowledge into climate change education in Tanzania for achieving a sustainable environment. Seventy documents, including peer-reviewed papers, reports from corporate institutions, policy briefs, proceedings and other grey literature were reviewed. We establish that IK systems are not integrated into CCE in Tanzania. However, we find opportunities for integration due to the evidence of the existing CCE efforts and potential complementary indigenous practices. By identifying, documenting, and validating indigenous knowledge and merging this knowledge with scientific insights, the fostering of an integrated approach to combat the enduring effects of climate change can be evidenced.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryPart of book or chapter of book . 2022Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPure University of ManchesterPart of book or chapter of book . 2022Data sources: Pure University of Manchesteradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 selected citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryPart of book or chapter of book . 2022Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPure University of ManchesterPart of book or chapter of book . 2022Data sources: Pure University of Manchesteradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 26 Apr 2023Publisher:Apollo - University of Cambridge Repository Authors: Corsi, Giulio;doi: 10.17863/cam.96384
Over the past several years, online disinformation and misinformation concerning climate change have gained substantive attention within the scientific community. However, while the dynamics that drive the circulation of false online information have been analysed extensively, it remains unclear whether (and how) this phenomenon can be counteracted. This research project analyses the emerging role of bottom-up mobilisations as a form of noise-reduction, thereby examining how social movements may deploy peer-produced communication narra- tives to counteract the circulation of online disinformation and misinformation relating to climate change. To investigate this communication dynamic, this research applies techniques from computational social sciences to an original dataset of ≈ 250k Facebook posts produced by two movements that best embody this novel and innovative generation of radical envi- ronmental activism: Extinction Rebellion and Fridays for Future. The central thesis of this project forwards two original contributions to the fields of climate change communication and social movement studies. First, it analyses the emergence of a new generation of radical climate change movements and the significance of this new development in climate activism (Chapter II). Second, it offers interdisciplinary empirical evidence on how radical climate movements can act as a bottom-up force for what I term ‘epistemic activism’. It presents a theoretical framework where activist-led, peer-produced communication can provide a coun- tering force to both vertical disinformation and horizontal misinformation. It quantitatively analyses two channels through which these forms of false information can be opposed. For reducing vertical disinformation, this work assesses the use of naming and shaming against information polluters (Chapter III), while for horizontal misinformation, it evaluates the dissemination of scientific counter-narratives (Chapter IV). Ultimately, this thesis shows that the two movements under analysis engage extensively in epistemic activism, with great potential to influence the online climate change debate positively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 selected citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mahmoud Murtala Farouq; Carlos Jimenez-Bescos; Saffa Riffat; Parham A Mirzaei;The increasing demand for temporary housing in many developing countries necessitate the use of sustainable and affordable construction options. Earthbag units have the potential to be integrated into such housings as they are inexpensive, sustainable, and straightforward material options for building structures. Nevertheless, due to their thermal characteristics, earthbag units cannot provide a thermally comfortable environment. Thus, the present study focuses on developing an environmentally and sustainable earthbag unit integrated with phase change materials (PCM) to convert severely harsh indoor spaces to moderately harsh ones. For the design and development of earthbag blocks, several units are developed with varying amounts of PCM encapsulated in expanded perlite (EP) and expanded graphite (EG) within each unit, including block A (reference), Block B (PCM 2.2% of sample weight), C (4.3%), and D (6.5%). An experimental study is then conducted to understand the microstructural properties of the embedded PCM composite in soil. Following this initial study, practical differential techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), thermal conductivity, and Oozing circle test, have been employed over the developed units to measure their thermal characteristics. Test results from DSC and TGA show good thermal stability of PCM and PCM composites, while SEM results indicated that PCM is well distributed within the pores of EP at 50%EP of the PCM weight. The study found the average indoor surface temperatures by block B, block C, and block D to drop compared to the reference block about 1.2 °C, 3.3 °C, and 4.1 °C, respectively. This clearly shows the benefit of integrating phase change materials in an earthbag unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.3 selected citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2011Publisher:Wiley Funded by:EC | WISEREC| WISERDong, Xuhui; Bennion, Helen; Maberly, Stephen C.; Sayer, Carl D.; Simpson, Gavin L.; Battarbee, Richard W.;Summary1. A long‐term monitoring programme on phytoplankton and physicochemical characteristics of Esthwaite Water (England) that started in 1945 provides a rare opportunity to understand the effects of climate and nutrients on a lake ecosystem.2. Monitoring records show that the lake experienced nutrient enrichment from the early 1970s, particularly after 1975, associated with inputs from a local sewage treatment plant, resulting in marked increases in concentration of soluble reactive phosphorus (SRP). Climatic variables, such as air temperature (AirT) and rainfall, exhibit high variability with increasing trends after 1975.3. Diatom analyses of an integrated 210Pb‐dated lake sediment core from Esthwaite Water, covering the period from 1945 to 2004, showed that fossil diatoms exhibited distinct compositional change in response to nutrient enrichment.4. Redundancy analysis (RDA) based on diatom and environmental data sets over the past 60 years showed that the most important variables explaining diatom species composition were winter concentrations of SRP, followed by AirT, independently explaining 22% and 8% of the diatom variance, respectively.5. Additive models showed that winter SRP was the most important factor controlling the diatom assemblages for the whole monitoring period. AirT had little effect on the diatom assemblages when nutrient levels were low prior to 1975. With the increase in nutrient availability during the eutrophication phase after 1975, climate became more important in regulating the diatom community, although SRP was still the major controlling factor.6. The relative effects of climate and nutrients on diatom communities vary depending on the timescale. RDA and additive model revealed that climate contributed little to diatom dynamics at an annual or decadal scale.7. The combination of monitoring and palaeolimnological records employed here offers the opportunity to explore how nutrients and climate have affected a lake ecosystem over a range of timescales. This dual approach can potentially be extended to much longer timescales (e.g. centuries), where long‐term, reliable observational records exist.
PURE Aarhus Universi... arrow_drop_down Freshwater BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.13...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.60 selected citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Freshwater BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.13...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
