- home
- Search
- Energy Research
- engineering and technology
- 13. Climate action
- 3. Good health
- GB
- AU
- Energy Research
- engineering and technology
- 13. Climate action
- 3. Good health
- GB
- AU
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Seyedvahid Vakili; Alessandro Schönborn; Aykut I. Ölçer;AbstractShipbuilding is an energy-intensive industrial sector that produces a significant amount of waste, pollution and air emissions. However, the International Maritime Organization concentrates only on reducing emissions during the operational phase. In order to completely phase out emissions from the shipping industry, a life-cycle approach must be taken. The study implemented the proposed transdisciplinary energy management framework in a Bangladeshi shipyard. The framework aims to support shipyard decision makers in making rational and optimized decisions to make shipyards sustainable, while maintaining good product quality and reducing relative cost. This is achieved by applying the Fuzzy Analytical Hierarchy Process and Fuzzy Order of Preference by Similarity to Ideal Solution methods to identify optimal solutions. In addition to making shipyards more sustainable, the framework can enhance both the business and socio-economic prospects of the shipyard and promote the reputation of the shipyard and improve its competitiveness and, in line with this, lead to the promotion of nationally determined contributions under the Paris Agreement for States. The implementation of the framework shows that the political and legal discipline, the social criteria and the implementation of ISO 14001 and cyber security were the most important criteria and options for the yard's decision makers.
e-Prints Soton arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert e-Prints Soton arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 China (People's Republic of)Publisher:MDPI AG Jie Xu; Shiyan Chang; Zhenhong Yuan; Yang Jiang; Shuna Liu; Weizhen Li; Longlong Ma;doi: 10.3390/en81212399
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV) model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF) ranging from 86 US dollar per metric ton (USD/t) to 110 (USD/t), while that of woody pellet fuel (WPF) varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Joan Manuel F. Mendoza; Adisa Azapagic; Alejandro Gallego-Schmid;Abstract The consumption of takeaway food is increasing worldwide. Single-use containers used for takeaway food represent a significant source of waste and environmental impacts due to their low recyclability. Consequently, it is important to identify the best available alternatives and improvement opportunities to reduce the environmental impacts of fast-food containers. For these purposes, this study estimates and compares for the first time the life cycle impacts of three most widely-used types of takeaway container: aluminium, polypropylene and extruded polystyrene. These are also compared to reusable polypropylene containers. The findings suggest that single-use polypropylene containers are the worst option for seven out of 12 impacts considered, including global warming potential. They are followed by the aluminium alternative with five highest impacts, including depletion of ozone layer and human toxicity. Overall, extruded polystyrene containers have the lowest impacts due to the lower material and electricity requirements in their manufacture. They are also the best option when compared to reused takeaway polypropylene containers, unless the latter are reused 3–39 times. The number of uses needed for the reusable “Tupperware” polypropylene food savers is even higher, ranging from 16 to 208 times, with terrestrial ecotoxicity being always higher than for extruded polystyrene, regardless of the number of uses. However, extruded polystyrene containers are currently not recycled and cannot be considered a sustainable option. If they were recycled in accordance with the European Union 2025 policy on waste packaging, most of their impacts would be reduced by >18%, while also reducing littering and negative effects on marine organisms. Most of the impacts of the other two types of container would also be reduced (>20%) through increased recycling. Implementing the European Union 2025 policy on recycling of waste packaging would reduce all the impacts by 2%–60%, including a 33% reduction in global warming potential. Based on 2025 million takeaway containers used annually in the European Union, the latter would save 61,700 t CO2 eq./yr, equivalent to the emissions of 55,000 light-duty vehicles. The outcomes of this study will be of interest to packaging manufacturers, food outlets, policy makers and consumers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.11.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 1Kdownload downloads 1,028 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.11.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Schweizerbart Funded by:EC | MACC II, EC | MACC-IIIEC| MACC II ,EC| MACC-IIIAuthors: Angela Benedetti; Marion Schroedter-Homscheidt; Niels Killius;The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI) forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI). The European Centre for Medium-Range Weather Forecasts (ECMWF) has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate) near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System) forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error) values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998) global to direct irradiance conversion scheme. Cloudy situations and especially thin ice cloud cases are forecasted much better with respect to biases and RMSE, but large biases are introduced in clear sky cases. When applying the MACC aerosol scheme to include aerosol direct effects, an improvement especially in DNI biases is found for cloud free cases as expected. However, a performance decrease is found for water cloud cases. It is assumed that this is caused by the lack of an explicit modelling of cloud-aerosol interactions, while other meteorological forcings for cloud processes like the temperature field are modified by the aerosols.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV El-Bidairi, Kutaiba S; Duc Nguyen, Hung; Jayasinghe, S.D.G; Mahmoud, Thair S; Penesis, Irene;Microgrids are increasingly being used as a platform to integrate distributed generation such as renewable energy sources and (RESs) conventional sources in both grid-connected and isolated power systems. Due to the inherent intermittent nature of RESs, energy storage systems (ESSs) that can absorb fluctuations have become inevitable. Nevertheless, large capacities of ESSs increase the initial cost while small capacities lead to instabilities and increase in the cost of conventional fuels. Therefore, finding the optimal size of the ESS for a given application is essential for the reliable, efficient and economical operation of a microgrid. Once the battery size is decided, maintaining its energy at appropriate levels is essential to ensure stable and safe operation of the microgrid. This paper presents a novel expert fuzzy system - grey wolf optimization (FL-GWO) based intelligent meta-heuristic method for battery sizing and energy management. The proposed energy management operation is carried out by a Grey Wolf Optimiser (GWO) that is helped to set the membership functions and rules of the fuzzy logic expert system. The unit commitment (UC) issue, which is essential for the proper operation of the isolated microgrid, has been additionally considered in this paper. To verify the performance of the proposed method, results are compared with the rules-based method and traditional GWO algorithm. It has been proven from the results that the FL-GWO has a significant convergence property and capability to minimize the Levelized Cost Of Electricity (LCOE) by 14.13% and 24.15% compared with conventional GWO algorithm and rules-based method, respectively. The weather conditions for different climates is used to verify the performance of the intelligent energy management method under different operating scenarios. The results show that the intelligent online multi-objective energy management strategy is capable of managing a smooth power flow with the same optimal configuration in the isolated microgrid, minimising the fossil fuel utilisation and reducing the CO2 emission level.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.08.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.08.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | CO2 injection and storage...UKRI| CO2 injection and storage - Short and long-term behaviour at different spatial scalesAuthors: H. Vosper; R.A. Chadwick; G.A. Williams;Abstract The use of water production as a pressure mitigation tool in the context of CO2 storage is widely studied but the impact it might have on the migration behaviour of a buoyant CO2 plume is less well reported. To investigate this further two different scenarios were modelled. In the first, a single water production well was used to draw CO2 along the strike of an open aquifer with a regional dip. Large rates of water production (5–10 times the volume of injected CO2) were required to achieve only small displacements of the CO2 plume. The second scenario investigated to what extent an induced hydraulic gradient might spill CO2 already stored in a structural trap. Here the effects were more pronounced with over 90% of the CO2 being spilled at a water cycling rate of 10 Mt per year (corresponding to a hydraulic gradient of 1.28 bar/km). The modelling was tested by the real case at Sleipner where CO2 migration in the Utsira Sand is potentially impacted by water production at the nearby Volve field. Simulations concluded that the CO2 plume at Sleipner should not be materially affected by water production from Volve and this is supported by the time-lapse seismics.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 20 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Igor Martek; M. Hosseini; Asheem Shrestha; Edmundas Zavadskas; Stewart Seaton;doi: 10.3390/su10040981
Sustainability has emerged, arguably, as the premiere mission of contemporary architecture. Green assessment tools abound, consultancy services flourish, buildings are marketed on the basis of sustainability performance, and government, media, and corporations seem preoccupied with assessing the quality of the built environment through a green lens. Yet for all the effort, and indeed for all the progress made, fundamental issues resistant to the structural change that is essential for genuine sustainability remain. This paper reviews the state of play of sustainability across the urban landscape. It considers the road travelled so far, and points out some of the major challenges that lie ahead.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Seyedvahid Vakili; Alessandro Schönborn; Aykut I. Ölçer;AbstractShipbuilding is an energy-intensive industrial sector that produces a significant amount of waste, pollution and air emissions. However, the International Maritime Organization concentrates only on reducing emissions during the operational phase. In order to completely phase out emissions from the shipping industry, a life-cycle approach must be taken. The study implemented the proposed transdisciplinary energy management framework in a Bangladeshi shipyard. The framework aims to support shipyard decision makers in making rational and optimized decisions to make shipyards sustainable, while maintaining good product quality and reducing relative cost. This is achieved by applying the Fuzzy Analytical Hierarchy Process and Fuzzy Order of Preference by Similarity to Ideal Solution methods to identify optimal solutions. In addition to making shipyards more sustainable, the framework can enhance both the business and socio-economic prospects of the shipyard and promote the reputation of the shipyard and improve its competitiveness and, in line with this, lead to the promotion of nationally determined contributions under the Paris Agreement for States. The implementation of the framework shows that the political and legal discipline, the social criteria and the implementation of ISO 14001 and cyber security were the most important criteria and options for the yard's decision makers.
e-Prints Soton arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert e-Prints Soton arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 China (People's Republic of)Publisher:MDPI AG Jie Xu; Shiyan Chang; Zhenhong Yuan; Yang Jiang; Shuna Liu; Weizhen Li; Longlong Ma;doi: 10.3390/en81212399
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV) model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF) ranging from 86 US dollar per metric ton (USD/t) to 110 (USD/t), while that of woody pellet fuel (WPF) varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Joan Manuel F. Mendoza; Adisa Azapagic; Alejandro Gallego-Schmid;Abstract The consumption of takeaway food is increasing worldwide. Single-use containers used for takeaway food represent a significant source of waste and environmental impacts due to their low recyclability. Consequently, it is important to identify the best available alternatives and improvement opportunities to reduce the environmental impacts of fast-food containers. For these purposes, this study estimates and compares for the first time the life cycle impacts of three most widely-used types of takeaway container: aluminium, polypropylene and extruded polystyrene. These are also compared to reusable polypropylene containers. The findings suggest that single-use polypropylene containers are the worst option for seven out of 12 impacts considered, including global warming potential. They are followed by the aluminium alternative with five highest impacts, including depletion of ozone layer and human toxicity. Overall, extruded polystyrene containers have the lowest impacts due to the lower material and electricity requirements in their manufacture. They are also the best option when compared to reused takeaway polypropylene containers, unless the latter are reused 3–39 times. The number of uses needed for the reusable “Tupperware” polypropylene food savers is even higher, ranging from 16 to 208 times, with terrestrial ecotoxicity being always higher than for extruded polystyrene, regardless of the number of uses. However, extruded polystyrene containers are currently not recycled and cannot be considered a sustainable option. If they were recycled in accordance with the European Union 2025 policy on waste packaging, most of their impacts would be reduced by >18%, while also reducing littering and negative effects on marine organisms. Most of the impacts of the other two types of container would also be reduced (>20%) through increased recycling. Implementing the European Union 2025 policy on recycling of waste packaging would reduce all the impacts by 2%–60%, including a 33% reduction in global warming potential. Based on 2025 million takeaway containers used annually in the European Union, the latter would save 61,700 t CO2 eq./yr, equivalent to the emissions of 55,000 light-duty vehicles. The outcomes of this study will be of interest to packaging manufacturers, food outlets, policy makers and consumers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.11.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 1Kdownload downloads 1,028 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.11.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Schweizerbart Funded by:EC | MACC II, EC | MACC-IIIEC| MACC II ,EC| MACC-IIIAuthors: Angela Benedetti; Marion Schroedter-Homscheidt; Niels Killius;The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI) forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI). The European Centre for Medium-Range Weather Forecasts (ECMWF) has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate) near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System) forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error) values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998) global to direct irradiance conversion scheme. Cloudy situations and especially thin ice cloud cases are forecasted much better with respect to biases and RMSE, but large biases are introduced in clear sky cases. When applying the MACC aerosol scheme to include aerosol direct effects, an improvement especially in DNI biases is found for cloud free cases as expected. However, a performance decrease is found for water cloud cases. It is assumed that this is caused by the lack of an explicit modelling of cloud-aerosol interactions, while other meteorological forcings for cloud processes like the temperature field are modified by the aerosols.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV El-Bidairi, Kutaiba S; Duc Nguyen, Hung; Jayasinghe, S.D.G; Mahmoud, Thair S; Penesis, Irene;Microgrids are increasingly being used as a platform to integrate distributed generation such as renewable energy sources and (RESs) conventional sources in both grid-connected and isolated power systems. Due to the inherent intermittent nature of RESs, energy storage systems (ESSs) that can absorb fluctuations have become inevitable. Nevertheless, large capacities of ESSs increase the initial cost while small capacities lead to instabilities and increase in the cost of conventional fuels. Therefore, finding the optimal size of the ESS for a given application is essential for the reliable, efficient and economical operation of a microgrid. Once the battery size is decided, maintaining its energy at appropriate levels is essential to ensure stable and safe operation of the microgrid. This paper presents a novel expert fuzzy system - grey wolf optimization (FL-GWO) based intelligent meta-heuristic method for battery sizing and energy management. The proposed energy management operation is carried out by a Grey Wolf Optimiser (GWO) that is helped to set the membership functions and rules of the fuzzy logic expert system. The unit commitment (UC) issue, which is essential for the proper operation of the isolated microgrid, has been additionally considered in this paper. To verify the performance of the proposed method, results are compared with the rules-based method and traditional GWO algorithm. It has been proven from the results that the FL-GWO has a significant convergence property and capability to minimize the Levelized Cost Of Electricity (LCOE) by 14.13% and 24.15% compared with conventional GWO algorithm and rules-based method, respectively. The weather conditions for different climates is used to verify the performance of the intelligent energy management method under different operating scenarios. The results show that the intelligent online multi-objective energy management strategy is capable of managing a smooth power flow with the same optimal configuration in the isolated microgrid, minimising the fossil fuel utilisation and reducing the CO2 emission level.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.08.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.08.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | CO2 injection and storage...UKRI| CO2 injection and storage - Short and long-term behaviour at different spatial scalesAuthors: H. Vosper; R.A. Chadwick; G.A. Williams;Abstract The use of water production as a pressure mitigation tool in the context of CO2 storage is widely studied but the impact it might have on the migration behaviour of a buoyant CO2 plume is less well reported. To investigate this further two different scenarios were modelled. In the first, a single water production well was used to draw CO2 along the strike of an open aquifer with a regional dip. Large rates of water production (5–10 times the volume of injected CO2) were required to achieve only small displacements of the CO2 plume. The second scenario investigated to what extent an induced hydraulic gradient might spill CO2 already stored in a structural trap. Here the effects were more pronounced with over 90% of the CO2 being spilled at a water cycling rate of 10 Mt per year (corresponding to a hydraulic gradient of 1.28 bar/km). The modelling was tested by the real case at Sleipner where CO2 migration in the Utsira Sand is potentially impacted by water production at the nearby Volve field. Simulations concluded that the CO2 plume at Sleipner should not be materially affected by water production from Volve and this is supported by the time-lapse seismics.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 20 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Igor Martek; M. Hosseini; Asheem Shrestha; Edmundas Zavadskas; Stewart Seaton;doi: 10.3390/su10040981
Sustainability has emerged, arguably, as the premiere mission of contemporary architecture. Green assessment tools abound, consultancy services flourish, buildings are marketed on the basis of sustainability performance, and government, media, and corporations seem preoccupied with assessing the quality of the built environment through a green lens. Yet for all the effort, and indeed for all the progress made, fundamental issues resistant to the structural change that is essential for genuine sustainability remain. This paper reviews the state of play of sustainability across the urban landscape. It considers the road travelled so far, and points out some of the major challenges that lie ahead.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu