- home
- Search
- Energy Research
- GB
- AU
- Applied Energy
- Energy Research
- GB
- AU
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | United Kingdom Sustainabl..., UKRI | Hydrogen and Fuel Cell Su...UKRI| United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC) CORE PROGRAMME ,UKRI| Hydrogen and Fuel Cell Supergen HubAuthors: Dodds, PE;AbstractThe UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL, identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model, which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent, which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios, so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat, disaggregation enables us to vary consumer behaviour and government policies on different house types, as well as highlighting different technology trends across the stock, in comparison with previous aggregated versions of the model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: M.J. Shilston; Chun Wah Leung; S.D. Probert;Abstract An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, protruding 60 mm perpendicularly upwards from a 250 mm × 190 mm horizontal rectangular base, is reported. For constant (to ±0·1°C) base temperatures between 40°C and 80°C, in an ambient environment of 20±0·2°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10·5±1·0 mm. The effects of the extent of the fin protrusions on the thermal performances of such vertical fins, on the same base, which was arranged to be either vertical or horizontal , have been studied. The experiments were performed with three different fin protrusions, namely 32 mm, 60 mm and 90 mm, for a base temperature of 40°C above that of the ambient environment. The steady-state rate of heat dissipation from the fin array increased slightly less than linearly with the fin protrusion for both orientations, but the relationship became closer to linear as the fin spacing was increased. A comparison of the abilities to dissipate heat to the room air from the same geometrical configuration having a rectangular fin array but positioned with vertical fins on a vertical base, vertical fins protruding upwards from a horizontal base, or horizontal fins on a vertical base, has been made. The orientation with vertical fins protruding upwards from the horizontal base, is the preferred option because of the relatively high rates of heat transfer that can then be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Shane McIntosh; Tony Vancov;Abstract Dilute sulphuric acid pretreatment followed by enzyme saccharification of Sorghum bicolor straw was undertaken to examine its potential as a feedstock in bioethanol production in Australia. Factorial design experiments evaluated the impact of pretreatment parameters on hemicellulose solubilisation and cellulose enzymatic hydrolysis. Sugar yields in prehydrolysate and saccharified liquors were found to increase with treatment severity; temperature was found to have the greatest impact. Degradation products were minimal; acetate and total phenolics peaked at 33 and 1.5 mg/g respectively. Conditions for maximum hemicellulose solubilisation (2% H 2 SO 4 for 60 min at 121 °C) differed to those associated with maximum glucose release from solid residue saccharifications (1% H 2 SO 4 /90 min /121 °C). Water extractive sugars accounted for over 20% total sugars recovered. Addition of β-glucosidase and xylanase to enzyme saccharification enhanced reaction rates and final sugar yields three-fold, whilst reducing cellulase dosage. Considering its abundance, high sugar potential and apparent ease of conversion, sorghum straw is an appropriate feedstock for the production of second generation fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | En-ComE: Energy Harvestin..., UKRI | SMARTER: Smart Multifunct...UKRI| En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture ,UKRI| SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRsAuthors: Yang Kuang; Rosalie Hide; Meiling Zhu;Abstract Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Tao, Bing; Zhang, Yue; Banks, Charles; Heaven, Sonia;Abstract In-situ CO2 biomethanisation offers a means to combine biogas upgrading with increased methane productivity, but its potential contribution to power-to-gas is often ignored due to concerns over process stability and control. The research presents an equation derived from fundamental chemical equilibria which predicts the relationship between partial CO2 pressure and digester pH, and allows estimation of the maximum achievable biogas methane content compatible with stable operation. A rapid experimental determination was also developed to support these predictions. The results were validated by long-term experiments using synthetic feedstock with different ammonia concentrations (2 and 3 g N L-1). Further trials carried out using food waste and sewage sludge as substrates showed stable operation at biogas methane contents of 92 and 90% CH4 and pH 8.5 and 7.9, respectively. CO2 biomethanisation was successfully demonstrated in a food waste digester with a total ammoniacal nitrogen of 4.8 g N L-1 with volumetric methane production enhanced by more than 2 times, from 2.29 to 5.01 L CH4 per L digester per day. The predictive approach used is applicable to digesters fed on different feedstocks and to hybrid systems with biomethanisation of both endogenous and exogenous CO2; and offers a basis for both process design guidelines and operational control. The output from the work thus provides engineers, operators and plant designers with a valuable tool for the successful implementation of in-situ biomethanisation in anaerobic digesters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | United Kingdom Sustainabl..., UKRI | Hydrogen and Fuel Cell Su...UKRI| United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC) CORE PROGRAMME ,UKRI| Hydrogen and Fuel Cell Supergen HubAuthors: Dodds, PE;AbstractThe UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL, identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model, which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent, which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios, so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat, disaggregation enables us to vary consumer behaviour and government policies on different house types, as well as highlighting different technology trends across the stock, in comparison with previous aggregated versions of the model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: M.J. Shilston; Chun Wah Leung; S.D. Probert;Abstract An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, protruding 60 mm perpendicularly upwards from a 250 mm × 190 mm horizontal rectangular base, is reported. For constant (to ±0·1°C) base temperatures between 40°C and 80°C, in an ambient environment of 20±0·2°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10·5±1·0 mm. The effects of the extent of the fin protrusions on the thermal performances of such vertical fins, on the same base, which was arranged to be either vertical or horizontal , have been studied. The experiments were performed with three different fin protrusions, namely 32 mm, 60 mm and 90 mm, for a base temperature of 40°C above that of the ambient environment. The steady-state rate of heat dissipation from the fin array increased slightly less than linearly with the fin protrusion for both orientations, but the relationship became closer to linear as the fin spacing was increased. A comparison of the abilities to dissipate heat to the room air from the same geometrical configuration having a rectangular fin array but positioned with vertical fins on a vertical base, vertical fins protruding upwards from a horizontal base, or horizontal fins on a vertical base, has been made. The orientation with vertical fins protruding upwards from the horizontal base, is the preferred option because of the relatively high rates of heat transfer that can then be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Shane McIntosh; Tony Vancov;Abstract Dilute sulphuric acid pretreatment followed by enzyme saccharification of Sorghum bicolor straw was undertaken to examine its potential as a feedstock in bioethanol production in Australia. Factorial design experiments evaluated the impact of pretreatment parameters on hemicellulose solubilisation and cellulose enzymatic hydrolysis. Sugar yields in prehydrolysate and saccharified liquors were found to increase with treatment severity; temperature was found to have the greatest impact. Degradation products were minimal; acetate and total phenolics peaked at 33 and 1.5 mg/g respectively. Conditions for maximum hemicellulose solubilisation (2% H 2 SO 4 for 60 min at 121 °C) differed to those associated with maximum glucose release from solid residue saccharifications (1% H 2 SO 4 /90 min /121 °C). Water extractive sugars accounted for over 20% total sugars recovered. Addition of β-glucosidase and xylanase to enzyme saccharification enhanced reaction rates and final sugar yields three-fold, whilst reducing cellulase dosage. Considering its abundance, high sugar potential and apparent ease of conversion, sorghum straw is an appropriate feedstock for the production of second generation fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | En-ComE: Energy Harvestin..., UKRI | SMARTER: Smart Multifunct...UKRI| En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture ,UKRI| SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRsAuthors: Yang Kuang; Rosalie Hide; Meiling Zhu;Abstract Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Tao, Bing; Zhang, Yue; Banks, Charles; Heaven, Sonia;Abstract In-situ CO2 biomethanisation offers a means to combine biogas upgrading with increased methane productivity, but its potential contribution to power-to-gas is often ignored due to concerns over process stability and control. The research presents an equation derived from fundamental chemical equilibria which predicts the relationship between partial CO2 pressure and digester pH, and allows estimation of the maximum achievable biogas methane content compatible with stable operation. A rapid experimental determination was also developed to support these predictions. The results were validated by long-term experiments using synthetic feedstock with different ammonia concentrations (2 and 3 g N L-1). Further trials carried out using food waste and sewage sludge as substrates showed stable operation at biogas methane contents of 92 and 90% CH4 and pH 8.5 and 7.9, respectively. CO2 biomethanisation was successfully demonstrated in a food waste digester with a total ammoniacal nitrogen of 4.8 g N L-1 with volumetric methane production enhanced by more than 2 times, from 2.29 to 5.01 L CH4 per L digester per day. The predictive approach used is applicable to digesters fed on different feedstocks and to hybrid systems with biomethanisation of both endogenous and exogenous CO2; and offers a basis for both process design guidelines and operational control. The output from the work thus provides engineers, operators and plant designers with a valuable tool for the successful implementation of in-situ biomethanisation in anaerobic digesters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu