- home
- Search
- Energy Research
- GB
- IT
- CA
- University of Cambridge
- Energy Research
- GB
- IT
- CA
- University of Cambridge
description Publicationkeyboard_double_arrow_right Article , Journal 2007 Australia, ChilePublisher:Elsevier BV Anthony J. McMichael; John Powles; Ricardo Uauy; Ricardo Uauy; Colin D. Butler;Food provides energy and nutrients, but its acquisition requires energy expenditure. In post-hunter-gatherer societies, extra-somatic energy has greatly expanded and intensified the catching, gathering, and production of food. Modern relations between energy, food, and health are very complex, raising serious, high-level policy challenges. Together with persistent widespread under-nutrition, over-nutrition (and sedentarism) is causing obesity and associated serious health consequences. Worldwide, agricultural activity, especially livestock production, accounts for about a fifth of total greenhouse-gas emissions, thus contributing to climate change and its adverse health consequences, including the threat to food yields in many regions. Particular policy attention should be paid to the health risks posed by the rapid worldwide growth in meat consumption, both by exacerbating climate change and by directly contributing to certain diseases. To prevent increased greenhouse-gas emissions from this production sector, both the average worldwide consumption level of animal products and the intensity of emissions from livestock production must be reduced. An international contraction and convergence strategy offers a feasible route to such a goal. The current global average meat consumption is 100 g per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 90 g per day is proposed as a working global target, shared more evenly, with not more than 50 g per day coming from red meat from ruminants (ie, cattle, sheep, goats, and other digastric grazers).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 976 citations 976 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Nigel Unwin; Nigel Unwin; Pamela Wadende; Cornelia Guell; Ishtar Govia;pmid: 31741443
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(19)32680-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(19)32680-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 30 Sep 2022 United KingdomPublisher:Wiley Li, Z; Huang, YT; Mohan, L; Zelewski, SJ; Friend, RH; Briscoe, J; Hoye, RLZ;handle: 10044/1/99594
Although Cs2AgBiBr6 halide elpasolites have gained substantial attention as potential nontoxic and stable alternatives to lead–halide perovskites, they are limited by their wide bandgaps >2.2 eV. Alloying with Sb into the pnictogen site has been shown to be an effective method to lower the bandgap, but this has not translated into improvements in photovoltaic (PV) performance. Herein, the underlying causes are investigated. Pinhole‐free films of Cs2Ag(SbxBi1−x)Br6 are achieved through antisolvent dripping, but PV devices still exhibit a reduction in power conversion efficiency from 0.44% ± 0.02% (without Sb) to 0.073% ± 0.007% (90% Sb; lowest bandgap). There is a 0.7 V reduction in the open‐circuit voltage, which correlates with the appearance of a sub‐bandgap state ≈0.7 eV below the optical bandgap in the Sb‐containing elpasolite films, as found in both absorbance and photoluminescence measurements. Through detailed Williamson–Hall analysis, it is found that adding Sb into the elpasolite films leads to an increase in film strain. This strain is relieved through aerosol‐assisted solvent treatment, which reduces both the sub‐bandgap state density and energetic disorder in the films, as well as reducing the fast early decay in the photogenerated carrier population due to trap filling. This work shows that Sb alloying leads to the introduction of extra sub‐bandgap states that limit the PV performance, but can be mitigated through post‐annealing treatment to reduce disorder and strain.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Cambridge University Press (CUP) Authors: Ying Liu; Zhong Zheng; Howard A. Stone;doi: 10.1017/jfm.2017.125
The drainage of a viscous gravity current into a deep porous medium driven by both the gravitational and capillary forces is considered in two steps. We first study the one-dimensional case where a layer of fluid drains vertically into an infinitely deep porous medium. We determine a transition from the capillary-driven regime to the gravity-driven regime as time proceeds. Second, we solve the coupled spreading and drainage problem. There are no self-similar solutions of the problem for the entire time period, so asymptotic analyses are developed for the height, depth and front location in both the early-time and the late-time periods. In addition, we present numerical results of the governing partial differential equations, which agree well with the self-similar solutions in the appropriate asymptotic limits.
Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IAIN Surakarta Authors: Timo Herberz; Vishnu Sankar Karanayil; A. Fardin; Mariel Alem;Climate change and an increased interest in renewable energy have resulted in a burgeoning wind energy sector. However, in the recent past, wind farms have faced resistance in acquiring permits due to concerns about their long-term effects on the local community. To understand the extent of these externalities, this study qualitatively meta-analyses four socio-economic impacts of interest, namely: house prices, tourism, catalytic effects of supply chain clustering, and social change. Geographically, the analysed reports include Europe, Canada and the US, and deductions are made for the EU. In order to bridge the gap of unavailability of primary data on the wind sector, relevant conclusions are drawn from other comparable sectors. Based on a rigorous review of primary qualitative research, this study concludes that offshore wind farms should be located more than 40 km away from the coast to eliminate risks of housing price devaluation and tourist activity reduction, which would directly affect the economic value of the region. In addition, the study found limited evidence to acknowledge the employment benefits in the local economy and social change in the community due to offshore wind farms. Monitoring mechanisms should be set up to prove or disprove the creation of local employment, crime and substance abuse. Furthermore, the study finds that adequate planning and management can ensure better socioeconomic outcomes in the community. Further research is recommended for the specific impact of overhead transmission lines and substations on property values and tourism.
Sustinere: Journal o... arrow_drop_down Sustinere: Journal of Environment and SustainabilityArticle . 2020 . Peer-reviewedData sources: CrossrefSustinere: Journal of Environment and SustainabilityArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22515/sustinere.jes.v4i3.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustinere: Journal o... arrow_drop_down Sustinere: Journal of Environment and SustainabilityArticle . 2020 . Peer-reviewedData sources: CrossrefSustinere: Journal of Environment and SustainabilityArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22515/sustinere.jes.v4i3.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 19 Sep 2016 United KingdomPublisher:IOP Publishing Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620358
The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband response are thus far limited. This paper investigates the feasibility of a new integrated cantilever-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Nov 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Beyer, Robert M; Manica, Andrea;pmid: 33159054
pmc: PMC7648644
AbstractSpecies’ vulnerability to extinction is strongly impacted by their geographical range size. Formulating effective conservation strategies therefore requires a better understanding of how the ranges of the world’s species have changed in the past, and how they will change under alternative future scenarios. Here, we use reconstructions of global land use and biomes since 1700, and 16 possible climatic and socio-economic scenarios until the year 2100, to map the habitat ranges of 16,919 mammal, bird, and amphibian species through time. We estimate that species have lost an average of 18% of their natural habitat range sizes thus far, and may lose up to 23% by 2100. Our data reveal that range losses have been increasing disproportionately in relation to the area of destroyed habitat, driven by a long-term increase of land use in tropical biodiversity hotspots. The outcomes of different future climate and land use trajectories for global habitat ranges vary drastically, providing important quantitative evidence for conservation planners and policy makers of the costs and benefits of alternative pathways for the future of global biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 Australia, ChilePublisher:Elsevier BV Anthony J. McMichael; John Powles; Ricardo Uauy; Ricardo Uauy; Colin D. Butler;Food provides energy and nutrients, but its acquisition requires energy expenditure. In post-hunter-gatherer societies, extra-somatic energy has greatly expanded and intensified the catching, gathering, and production of food. Modern relations between energy, food, and health are very complex, raising serious, high-level policy challenges. Together with persistent widespread under-nutrition, over-nutrition (and sedentarism) is causing obesity and associated serious health consequences. Worldwide, agricultural activity, especially livestock production, accounts for about a fifth of total greenhouse-gas emissions, thus contributing to climate change and its adverse health consequences, including the threat to food yields in many regions. Particular policy attention should be paid to the health risks posed by the rapid worldwide growth in meat consumption, both by exacerbating climate change and by directly contributing to certain diseases. To prevent increased greenhouse-gas emissions from this production sector, both the average worldwide consumption level of animal products and the intensity of emissions from livestock production must be reduced. An international contraction and convergence strategy offers a feasible route to such a goal. The current global average meat consumption is 100 g per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 90 g per day is proposed as a working global target, shared more evenly, with not more than 50 g per day coming from red meat from ruminants (ie, cattle, sheep, goats, and other digastric grazers).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 976 citations 976 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Nigel Unwin; Nigel Unwin; Pamela Wadende; Cornelia Guell; Ishtar Govia;pmid: 31741443
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(19)32680-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(19)32680-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 30 Sep 2022 United KingdomPublisher:Wiley Li, Z; Huang, YT; Mohan, L; Zelewski, SJ; Friend, RH; Briscoe, J; Hoye, RLZ;handle: 10044/1/99594
Although Cs2AgBiBr6 halide elpasolites have gained substantial attention as potential nontoxic and stable alternatives to lead–halide perovskites, they are limited by their wide bandgaps >2.2 eV. Alloying with Sb into the pnictogen site has been shown to be an effective method to lower the bandgap, but this has not translated into improvements in photovoltaic (PV) performance. Herein, the underlying causes are investigated. Pinhole‐free films of Cs2Ag(SbxBi1−x)Br6 are achieved through antisolvent dripping, but PV devices still exhibit a reduction in power conversion efficiency from 0.44% ± 0.02% (without Sb) to 0.073% ± 0.007% (90% Sb; lowest bandgap). There is a 0.7 V reduction in the open‐circuit voltage, which correlates with the appearance of a sub‐bandgap state ≈0.7 eV below the optical bandgap in the Sb‐containing elpasolite films, as found in both absorbance and photoluminescence measurements. Through detailed Williamson–Hall analysis, it is found that adding Sb into the elpasolite films leads to an increase in film strain. This strain is relieved through aerosol‐assisted solvent treatment, which reduces both the sub‐bandgap state density and energetic disorder in the films, as well as reducing the fast early decay in the photogenerated carrier population due to trap filling. This work shows that Sb alloying leads to the introduction of extra sub‐bandgap states that limit the PV performance, but can be mitigated through post‐annealing treatment to reduce disorder and strain.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Cambridge University Press (CUP) Authors: Ying Liu; Zhong Zheng; Howard A. Stone;doi: 10.1017/jfm.2017.125
The drainage of a viscous gravity current into a deep porous medium driven by both the gravitational and capillary forces is considered in two steps. We first study the one-dimensional case where a layer of fluid drains vertically into an infinitely deep porous medium. We determine a transition from the capillary-driven regime to the gravity-driven regime as time proceeds. Second, we solve the coupled spreading and drainage problem. There are no self-similar solutions of the problem for the entire time period, so asymptotic analyses are developed for the height, depth and front location in both the early-time and the late-time periods. In addition, we present numerical results of the governing partial differential equations, which agree well with the self-similar solutions in the appropriate asymptotic limits.
Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IAIN Surakarta Authors: Timo Herberz; Vishnu Sankar Karanayil; A. Fardin; Mariel Alem;Climate change and an increased interest in renewable energy have resulted in a burgeoning wind energy sector. However, in the recent past, wind farms have faced resistance in acquiring permits due to concerns about their long-term effects on the local community. To understand the extent of these externalities, this study qualitatively meta-analyses four socio-economic impacts of interest, namely: house prices, tourism, catalytic effects of supply chain clustering, and social change. Geographically, the analysed reports include Europe, Canada and the US, and deductions are made for the EU. In order to bridge the gap of unavailability of primary data on the wind sector, relevant conclusions are drawn from other comparable sectors. Based on a rigorous review of primary qualitative research, this study concludes that offshore wind farms should be located more than 40 km away from the coast to eliminate risks of housing price devaluation and tourist activity reduction, which would directly affect the economic value of the region. In addition, the study found limited evidence to acknowledge the employment benefits in the local economy and social change in the community due to offshore wind farms. Monitoring mechanisms should be set up to prove or disprove the creation of local employment, crime and substance abuse. Furthermore, the study finds that adequate planning and management can ensure better socioeconomic outcomes in the community. Further research is recommended for the specific impact of overhead transmission lines and substations on property values and tourism.
Sustinere: Journal o... arrow_drop_down Sustinere: Journal of Environment and SustainabilityArticle . 2020 . Peer-reviewedData sources: CrossrefSustinere: Journal of Environment and SustainabilityArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22515/sustinere.jes.v4i3.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustinere: Journal o... arrow_drop_down Sustinere: Journal of Environment and SustainabilityArticle . 2020 . Peer-reviewedData sources: CrossrefSustinere: Journal of Environment and SustainabilityArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22515/sustinere.jes.v4i3.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 19 Sep 2016 United KingdomPublisher:IOP Publishing Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620358
The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband response are thus far limited. This paper investigates the feasibility of a new integrated cantilever-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Nov 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Beyer, Robert M; Manica, Andrea;pmid: 33159054
pmc: PMC7648644
AbstractSpecies’ vulnerability to extinction is strongly impacted by their geographical range size. Formulating effective conservation strategies therefore requires a better understanding of how the ranges of the world’s species have changed in the past, and how they will change under alternative future scenarios. Here, we use reconstructions of global land use and biomes since 1700, and 16 possible climatic and socio-economic scenarios until the year 2100, to map the habitat ranges of 16,919 mammal, bird, and amphibian species through time. We estimate that species have lost an average of 18% of their natural habitat range sizes thus far, and may lose up to 23% by 2100. Our data reveal that range losses have been increasing disproportionately in relation to the area of destroyed habitat, driven by a long-term increase of land use in tropical biodiversity hotspots. The outcomes of different future climate and land use trajectories for global habitat ranges vary drastically, providing important quantitative evidence for conservation planners and policy makers of the costs and benefits of alternative pathways for the future of global biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19455-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu