- home
- Search
- Energy Research
- 7. Clean energy
- 1. No poverty
- GB
- DE
- EU
- Energy Research
- 7. Clean energy
- 1. No poverty
- GB
- DE
- EU
Research data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Authors:Mitchell, Rachel;
Mitchell, Rachel
Mitchell, Rachel in OpenAIRENatarajan, Sukumar;
Natarajan, Sukumar
Natarajan, Sukumar in OpenAIREdoi: 10.15125/bath-00774
This dataset consists of hourly internal and daily external temperature data from 82 certified Passivhaus dwellings in the UK. The data can be used for calculating overheating risk and guaging how comfortable a home would be in the summer. This data come from 16 different sites and includes houses and flats. Some of the data is from the living room only, for other dwellings there were sensors in muitple rooms and these are indicated. As this data was compared to CIBSE TM59 "Design methodology for the assessment of overheating risk in homes", there is a calculation of the running mean temperature and maximum temperature. The variables are Timestamp = time and date SiteID = Site number (1-16) DWType = dwelling type (House or Flat) HouseID = unique reference number for each dwelling in dataset Room = room type LR = living room , BR= bedroom, KI= Kitchen, BT= bathroom T.int = internal temperature (mean hourly) T.ext.daily = external temperature (mean daily) T.rm = running mean temperature calculated using the method described in CIBSE TM59 T.max = maximum daily intenral temperature calculated using the method described in CIBSE TM59 This data was provided by the Technology Stratergy Board Building Performance Evaluation Program, and is available from the digital catapault. Other data was provided by WARM low energy Consultancy and indidiual home owners. All data has been anonymised
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors:S��sser, Diana;
al Rakouki, Housam;S��sser, Diana
S��sser, Diana in OpenAIRELilliestam, Johan;
Lilliestam, Johan
Lilliestam, Johan in OpenAIREQTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | GeoFitEC| GeoFitAuthors: Piccinini, Alessandro;Dataset supporting publication: “A novel ROM methodology to support the estimation of the energy savings under the Measurement and Verification protocol” (publication available for download: GEOFIT Zenodo) Datasets resultant from simulation of the integrated system into buildings. Conference paper presented in IBPSA-England Building Simulation and Optimisation Conference 2020 This paper presents a novel Reduced Order grey box Model (ROM) methodology, based on a Resistor-Capacitor (RC) network, which supports the creation of the baseline energy consumption and the estimation of energy savings due to Energy Conservation Measures (ECMs) under the Measurement and Verification protocol. Within this scope, a description of the RC network, including a calculation of the parameters’ needed to execute the ROM, are presented. This ROM methodology is demonstrated on an educational building located in Sant Cugat, Spain as part of the H2020 GEOFIT project. The results presented in this paper demonstrate that the ROM is sufficiently accurate for the creation of the baseline energy consumption and for estimating the energy savings of different ECMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7435583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7435583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | VERIFY, EC | CHEEC| VERIFY ,EC| CHEAuthors:Super, I.;
Dellaert, S.N.C.; Visschedijk, A.J.H.;Super, I.
Super, I. in OpenAIREDenier van der Gon, H.A.C.;
Denier van der Gon, H.A.C.
Denier van der Gon, H.A.C. in OpenAIREThis dataset was prepared by TNO as a contribution to the H2020 project CHE and the H2020 project VERIFY. The basis is a high-resolution (~1x1 km) emission inventory providing CO2 and CO (from fossil fuels and biofuels separately) over western Europe (2ºW - 19ºE, 47ºN - 56ºN). The reported emissions by European countries to UNFCCC (CO2) and to EMEP/CEIP (CO) have been used and where needed gap-filled or replaced with emission data from the GAINS model. These country-level emissions are disaggregated in space using a consistent spatial distribution methodology, whereas large point sources are listed with their exact locations. This approach is similar to the one described by Kuenen et al., (ACP, 2014). Emissions are reported per GNFR sector, with an extra split for road transport. The emission grids that are part of this dataset are a variation on the base grid, representing the uncertainty in the emission data. Each grid is equally plausible. The grids have been created using a Monte Carlo approach. The uncertainties in the underlying data used to create the base grid (emissions: activity data and emission factors, spatial proxies) have been collected (either from country reports or based on expert judgement). Through the Monte Carlo simulation these uncertainties, taking into account error correlations between some sub-sectors, are combined to create ten new emission grids. The spread in emissions between these emission maps gives an indication of the uncertainty in the emissions. The grid files (in .csv and .nc format) contain annual total emissions per grid cell for the year 2015. A separate file has been prepared for each ensemble member in the Monte Carlo simulation (indicated with M). The unit in the files is kg/yr. A detailed description of the Monte Carlo simulation is presented in: Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.: Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-696, in review, 2019. N.B. It is important to note that 10 maps are not sufficient to describe the sometimes complex uncertainty structures, for example in the case of lognormal uncertainty distributions. The interpretation of the uncertainty based on these 10 maps should therefore be done with care. NB. Despite efforts to prevent negative emissions to occur in the grid maps, some negative values are still present. In local studies this might cause some issues, and we recommend to set negative emissions to zero in those cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3584549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 301visibility views 301 download downloads 393 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3584549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors:O'Reilly, Ryan;
O'Reilly, Ryan
O'Reilly, Ryan in OpenAIRECohen, Jed;
Cohen, Jed
Cohen, Jed in OpenAIREReichl, Johannes;
Reichl, Johannes
Reichl, Johannes in OpenAIREThree data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 European UnionPublisher:EEA Data reported by companies on the production, import, export, destruction and feedstock use of fluorinated greenhouse gases in the European Union during the years 2007-2019. The primary data is synthesised and aggregated at EU level and used to assess the progress on HFC phase-down made under both EU legislation and the UN framework as part of the Kigali Amendment to the Montreal Protocol. The data also details the amount of F-gases supplied to various industrial applications.
European Union Open ... arrow_drop_down European Union Open Data PortalDataset . 2020License: CC_BY_4_0Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::ccd825fc244b2133d84065b6344ea8dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert European Union Open ... arrow_drop_down European Union Open Data PortalDataset . 2020License: CC_BY_4_0Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::ccd825fc244b2133d84065b6344ea8dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors:Zoe M. Harris;
Zoe M. Harris
Zoe M. Harris in OpenAIREYiannis Kountouris;
Yiannis Kountouris
Yiannis Kountouris in OpenAIREdoi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors:Kamalakanta Sahoo;
Kamalakanta Sahoo
Kamalakanta Sahoo in OpenAIRERichard Bergman;
Sevda Alanya-Rosenbaum;Richard Bergman
Richard Bergman in OpenAIREHongmei Gu;
+1 AuthorsHongmei Gu
Hongmei Gu in OpenAIREKamalakanta Sahoo;
Kamalakanta Sahoo
Kamalakanta Sahoo in OpenAIRERichard Bergman;
Sevda Alanya-Rosenbaum;Richard Bergman
Richard Bergman in OpenAIREHongmei Gu;
Shaobo Liang;Hongmei Gu
Hongmei Gu in OpenAIREdoi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: M.Elena Cantos-Soto; Christian Wieckert;Lucía Martínez-Arcos;
Christian Hutter; +2 AuthorsLucía Martínez-Arcos
Lucía Martínez-Arcos in OpenAIREM.Elena Cantos-Soto; Christian Wieckert;Lucía Martínez-Arcos;
Christian Hutter;Lucía Martínez-Arcos
Lucía Martínez-Arcos in OpenAIREMarc Röger;
Marc Röger
Marc Röger in OpenAIREAránzazu Fernández-García;
Aránzazu Fernández-García
Aránzazu Fernández-García in OpenAIREAbstract Secondary concentrators are used in solar concentrating systems to redirect solar beams reflected by the primary concentrators to the focal point or line. These components allow to increase the concentrated solar flux density and hence to lower thermal radiation losses. Solar reflectors for secondary concentrators are permanently exposed to environmental conditions, high radiation fluxes and elevated temperatures that potentially cause stress and degradation throughout the time. Therefore, analyzing solar reflectors of secondary concentrators by simulating these conditions is crucial. No previous research works about the durability of solar reflector materials for secondary concentrators have been reported. The present work is focused on studying the degradation of the reflector materials by simulating accelerated aging, caused by several ambient parameters and the effect of concentrated radiation. Both cooled and uncooled systems for secondary concentrators are included in this study. According to results obtained, aluminum reflectors and thin silvered-glass reflectors glued to an aluminum structure showed minimum reflectance losses and structural degradation under the operation conditions of cooled 3D secondary concentrators (tower systems). Following critical aspects to avoid reflector degradation were identified: to select a suitable adhesive material to glue the thin silvered-glass reflector to the support aluminum structure, to properly protect reflectors edges, to design a suitable cooling system and to avoid the combination of high radiation fluxes with mechanical stress. In addition, laminated silvered-glass reflectors have shown to be suitable for uncooled 2D secondary concentrators (Fresnel collectors). Furthermore, a comparison with naturally aged secondary concentrators using silvered-glass reflectors glued to an aluminum structure revealed that the simulated degradation under accelerated conditions performed in this work did reproduce the most frequent degradation patterns suffered in real operating conditions.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu