search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
69 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • GB
  • DE
  • US
  • RU

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Madeline R Lueck; Michelle M Moyer; Tanya E Cheeke;

    Abstract Aims Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. Methods and results In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. Conclusions Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jiaguo Yu; Licheng Sun; Licheng Sun; Yufei Jia; +8 Authors

    An amorphous WO3 induced lattice distortion strategy leads to only 2 wt% Ir for efficient overall water splitting in acid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy & Fuels
    Article . 2020 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy & Fuels
      Article . 2020 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Phillips, Freedom-Kai;

    Achievement of sustainable development in light of ongoing climate change and biodiversity pressures benefits from the deployment of innovations that foster engagement and uptake across all levels, mobilises finance flows commencement to the scale of the challenge, and enables the dissemination of transition solutions that support the low carbon economy. This research investigates the relationship between the legal architecture of market mechanisms under international law and the role of private actors, and how this contributes to sustainable development. Through an exploration of how market mechanisms under the climate change and biodiversity regimes have achieved environmentally sound outcomes, been advanced in sectoral approaches, and facilitated via bilateral and multilateral trade and investment relationships, important insights are identified regarding the composition of effective law and governance architectural approaches. Leveraging experiences derived from treaty practice viewed through an interactional account of international law, this assessment elucidates the important role played by alignment of legal regimes, robust transparency measures, and complementary schemes such as stakeholder-endorsed certifications in buttressing the established measures to ensure sustainable development outcomes and contributes to understanding the role of private actors in the operationalisation of environmental agreements. Research findings suggest it is the interaction of norms across the international legal architecture, informed by relationships within and across relevant treaty systems and the general corpus of international law, and actualised through engagement with private actors as a component of market mechanisms that provides the opportunity for congruence of practice, forging of shared understandings, and normative internalisation and ownership among communities of practice that stimulates both innovative solutions and ambitious action.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gedle, Yibekal; Schmitz, Mark; Schmitz, Pascal; Herrmann, Ulf; +5 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Herzog, Dirk; Röver, Tim; abdolov, sagynysh; Becker, Florian; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hummel, Maximilian;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Millington, Alice;

    This thesis examines cultural constructions of climate and temporality in eastern Nepal, focusing on Walung, a village in Taplejung District. Although the residents of Walung have long noticed manifestations of global climatic change, such observations were primarily attributed to a change in time (Tib. *dus*) rather than climate (Tib. *gnam gshis*). This interpretation often drew upon Buddhist prophetic narratives which foretell an imminent era of decline, termed '*kawa nyampa*' - a vision of degeneration attributed to Guru Rinpoche (Skt. Padmasambhava). In Walung, moral, meteorological, and temporal realms were deeply intertwined, with both climatic disruptions and perceived temporal changes attributed to the wider decay of human morality. The onset of '*kawa nyampa*' was traced to an evening in 1963 when flooding, unleashed by a semi-spiritual entity called the '*khangba*' (snow frog), devastated the village. The flood represented a temporal rupture, marking the end of a period of prosperity (*kawa sangbo*), and was interpreted as a collective punishment for spiritual transgressions. However, the temporal shifts that Walung residents have detected extend beyond climate-related phenomena. They also encompassed broader socioeconomic and political changes, including shifts in local diets and perceptions of declining life expectancy. The central claim of the thesis is that disruptions in climate are predominantly experienced as disruptions to *time* in upper Taplejung. Moreover, the Walung vision of a degenerate time (*kawa nyampa*) is rooted to far vaster landscape of changes than simply meteorology. In the words of one resident: “the change in time means a change in everything” – so too has the change in ‘everything’ produced a change in time. Building on ethnographic fieldwork in Taplejung District (November 2021-May 2022) and complemented by secondary field visits to Sikkim and Kathmandu, what begins as a study of climate change unfolds into an analysis of a far deeper sense of temporal disjunction. The thesis deciphers local observations of the stars, migratory birds, and cosmological narratives of deity movements as localised systems of time-reckoning. It also considers the embodied rhythms of life and death within aspects of Himalayan time perception. Against the backdrop of anthropogenic climate change and geopolitical ruptures at the Sino-Nepali border, however, these complex synchronicities are becoming destabilised, and time itself is unpicked at its seams. As environmental, geopolitical, and temporal fractures become more pronounced, Walung residents fear the fulfilment of prophetic visions of degeneration.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Radionovskaya, Svetlana;

    Since the industrial revolution, humans have caused profound climate changes, primarily by releasing geological carbon into the atmosphere and increasing atmospheric CO2, with current levels reaching >400ppm, a concentration unprecedented in the last 800ka. This has led to far-reaching socioeconomic consequences for human society and risks for all levels of ecosystem. A better understanding of rapid climatic changes is desperately needed in order to inform mitigation and adaptation strategies for future climate change. The last glacial cycle experienced orbital and millennial scale climatic variability, as indicated by high latitude ice core records and many other high-resolution marine and terrestrial records. These climatic changes included, but were not limited to, changes in atmospheric CO2, temperature, the hydroclimate, sea surface temperature (SST), ocean circulation and ocean biogeochemistry. The ocean is thought to have played a key role in controlling and modulating these changes through its impacts on both heat transport and the carbon cycle. High resolution marine sediment cores can be used to reconstruct these changes and may help to elucidate the mechanisms behind them. To date, most studies have focused on the deglaciation, and only sparse, low-resolution records exist for Marine Isotope Stage (MIS) 4, a key paleoclimatic interval for the last glacial inception. MIS 4 is characterised by a rapid CO2 drop of ~40ppm, which is comparable in duration and magnitude to the first rapid increase seen during the last deglaciation. It also involved a large drop in temperature, as indicated by Greenland and Antarctic ice cores, a decrease in sea level, and a possible slowdown of Atlantic Meridional Overturning Circulation (AMOC) as reconstructed from various proxy records. Several millennial events occurred during MIS 4, including Heinrich Stadial 6 and Dansgaard-Oeschger (DO) events 16-19. MIS 4 is thus an ideal interval to study and disentangle, glacial-interglacial and millennial variability. It also provides a window into the mechanisms of rapid CO2 change and their contribution to longer-term (orbital) climate change. Furthermore, the termination of MIS 4 allows for a comparison with the last deglaciation. In this thesis, I collect paleoceanographic data to improve coverage of this important interval from a suite of sediment cores retrieved from the Iberian Margin in the Northeast Atlantic, and a single core from the deep Sub-Antarctic Atlantic core site. This thesis ultimately aims to enhance the current understanding of the ocean’s role in and response to abrupt and orbital-scale climate changes during MIS 4 and to draw lessons on its wider implications for climate variability. Ultimately, this may contribute to our understanding of natural carbon cycle-climate feedbacks that will play a role in anthropogenic climate changes in the future. High resolution planktonic foraminifera Mg/Ca-based SST reconstructions from the Iberian Margin during MIS 4 show that certain aspects of the surface ocean response may not always track Greenland temperature and that Greenland ice core records do not serve as a universal template for climatic variability across the whole of the North Atlantic, likely due to the seasonal habitat biases associated with SST reconstructions. A strong hydroclimate signal is shown in planktic foraminifera δ18O from the Iberian Margin, whereby glacial (MIS 4) hydroclimate variability is coupled to a combination of the high-latitude North Atlantic changes and low-latitude tropical hydroclimate. Furthermore, for the first time, a high-resolution Mg/Ca-based SST record from the Iberian Margin, covering the last 85ka, demonstrates clear similarities between MIS 4 and MIS 2. This includes a similar decoupling of sub-tropical summer SST from Greenland temperatures recorded in ice core records during pre-HS 6 MIS 4 and the Last Glacial Maximum (LGM). The record also emphasises that the most severe (coldest and driest) conditions occurred in the midlatitude North Atlantic during Heinrich Stadials, rather than the ‘peak’ glacial conditions of MIS 4 or the LGM. The deep ocean likely played a key role in modulating CO2 on millennial and astronomical timescales, for example through changes in its respired carbon inventory. Conservative parameters that are indicative of deep-water hydrography, and by extension circulation, are deep water temperature (Tdw) and associated δ18Odw. Reconstructed Tdw changes from the Iberian Margin show a larger influence of southern sourced waters during MIS 4 and particularly during HS 6. Atlantic sector Southern Ocean (SO) Tdw closely follows Antarctic temperature, atmospheric CO2 and the mean ocean temperature, implying that the deep SO contributed significantly to the global ocean energy budget on multi-millennial time scales across MIS 4, likely mediated by buoyancy forcing in the SO. This in turn was likely linked to sea-ice expansion at the MIS 5a/4 transition, aided by a parallel shoaling of North Atlantic Deep Water (NADW) as suggested by the North Atlantic Tdw record. Together with (arguably smaller) contributions from reduced air-sea gas exchange efficiency in the SO, these changes would have lowered atmospheric CO2 during MIS 4, through their impact on the solubility- and soft tissue “pumps” (i.e. the ocean’s disequilibrium and respired carbon budgets). Because the amount of respired carbon in deep-water broadly scales with the dissolved oxygen concentration, bottom water O2 reconstructions, [O2]bw, were investigated for a depth transect from the Iberian Margin and for the Atlantic sector of the Southern Ocean. Qualitative benthic foraminiferal assemblage records from a depth transect on the Iberian Margin show that shifts in oxygenated environments are primarily controlled by the quality and/or quantity of Corg reaching the sea floor, rather than [O2]bw. There are distinct shifts in assemblages associated with more periodic and/or degraded Corg flux during MIS 4 and an indication of low [O2]bw during HS 6 at the mid-depths, however no significant changes in the flux of Corg (i.e. ‘export production’) were found. Multi-proxy foraminiferal geochemical [O2]bw reconstructions from the Iberian Margin show a gradual decrease in [O2]bw at the mid-depth North Atlantic during MIS 4 with a minimum during HS 6, likely controlled by ventilation changes (i.e. changes in ocean circulation, including water mass sourcing combined with active but diminished transport, or altered preformed ‘end-member’ values). In the meantime, the [O2]bw record from the South Atlantic closely follows atmospheric CO2, likely indicative of ocean ‘ventilation’ impacts on ocean-atmosphere carbon exchange. Indeed, the Southern Ocean appears to have represented a significant reservoir for sequestering CO2 away from the atmosphere during MIS 4, as indicated by the respired- and equilibrium carbon inventory changes that are implied by the [O2]bw and Tdw reconstructions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Streier, Robin; Wirtz, Siegmar; Aleksandrov, Krasimir; Gehrmann, Hans-Joachim; +5 Authors

    This research investigates the flight behavior of refuse-derived fuel (RDF) in a drop shaft using Computer Vision to obtain statistical data on the aerodynamic properties of the particles. Methods to determine 3D geometry models of complex-shaped particles by photogrammetry and to obtain time resolved particle positions and velocities are described. Furthermore, an approach to obtain the frequency distribution of drag and lift coefficients from photogrammetric analysis and drop shaft experiments is presented. The image evaluation is based on algorithms of the open-source libraries OpenCV, COLMAP as well as MeshLab and Open3D. The precision of the system is validated employing model particles with known geometry. The 3D particle models overestimate the particle surface area by 4.58 %, the position detection works with a mean deviation of 2.73 %. The average sink rate is calculated with an accuracy of 4.87 % and the drag coefficient with an accuracy of 2.08 %. Finally, the frequency distribution of four RDF fractions, namely, textiles, cardboard, 3D plastic particles and 2D plastic foils are presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Iqbal, Affan;

    Halide perovskites are the leading candidates for next-generation, low-cost optoelectronics with power conversion efficiencies well above 25%. However, operational stability remains a key challenge. Although there is an understanding that the microscale and nanoscale play a consequential role in determining the macroscopic performance and stability, significant gaps remain in the mechanistic understanding of degradation processes at the nanoscale and the mechanisms for stability in cation-alloyed systems. Nanoscale hexagonal phase impurities have been identified as problematic for operational stability, leading to both performance losses and morphological degradation. However, it is still unclear at what stage these phase impurities originate. Understanding this better is critical in order to mitigate the harmful effects of these phase impurities on performance and operational stability. Cation alloying is a commonly used technique in the field to mitigate these hexagonal phase impurities, although not without its challenges. In this thesis study, the nanoscale structural landscape of key halide perovskite compositions is studied. By taking snapshots of the perovskite at different states of the annealing process, the impact of phase impurities on device performance is characterised. Thereon, the mechanism by which composition dictates photostability in FA-rich perovskite absorber layers is studied. It is demonstrated that the composition impacts the degree of octahedral tilt, which is essential to restricting the transition to hexagonal phase impurities. Additionally, it is demonstrated that while a judicious mix of A-site cations can be used to stabilise the photoactive black phase of halide perovskites, it is challenging to achieve this homogeneously over large areas, necessitating a search for alternative or complementary approaches to stabilise perovskite via octahedral tilt. Using scanning electron diffraction (SED) studies, the spacegroup of additive-stabilised-CsPbI3 is demonstrated to be a low symmetry tilted γ-phase. Furthermore, using SED, the nanoscale structural landscape of mixed-phase CsPbI3 absorber layers is studied and it is demonstrated that both narrow-bandgap γ-phase and wide-bandgap δ-phase co-exist at the nanoscale, enabling stable and bright white-light emission. Overall, this thesis provides insights into the role of nanoscale structure in dictating the properties and behaviour of halide perovskites and offers rational guidelines for their optimisation and use in optoelectronic devices. Additionally, it is demonstrated that SED is a powerful tool for studying these materials at the atomic scale, allowing for the detailed characterisation of their structures and properties.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
69 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Madeline R Lueck; Michelle M Moyer; Tanya E Cheeke;

    Abstract Aims Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. Methods and results In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. Conclusions Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jiaguo Yu; Licheng Sun; Licheng Sun; Yufei Jia; +8 Authors

    An amorphous WO3 induced lattice distortion strategy leads to only 2 wt% Ir for efficient overall water splitting in acid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy & Fuels
    Article . 2020 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy & Fuels
      Article . 2020 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Phillips, Freedom-Kai;

    Achievement of sustainable development in light of ongoing climate change and biodiversity pressures benefits from the deployment of innovations that foster engagement and uptake across all levels, mobilises finance flows commencement to the scale of the challenge, and enables the dissemination of transition solutions that support the low carbon economy. This research investigates the relationship between the legal architecture of market mechanisms under international law and the role of private actors, and how this contributes to sustainable development. Through an exploration of how market mechanisms under the climate change and biodiversity regimes have achieved environmentally sound outcomes, been advanced in sectoral approaches, and facilitated via bilateral and multilateral trade and investment relationships, important insights are identified regarding the composition of effective law and governance architectural approaches. Leveraging experiences derived from treaty practice viewed through an interactional account of international law, this assessment elucidates the important role played by alignment of legal regimes, robust transparency measures, and complementary schemes such as stakeholder-endorsed certifications in buttressing the established measures to ensure sustainable development outcomes and contributes to understanding the role of private actors in the operationalisation of environmental agreements. Research findings suggest it is the interaction of norms across the international legal architecture, informed by relationships within and across relevant treaty systems and the general corpus of international law, and actualised through engagement with private actors as a component of market mechanisms that provides the opportunity for congruence of practice, forging of shared understandings, and normative internalisation and ownership among communities of practice that stimulates both innovative solutions and ambitious action.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gedle, Yibekal; Schmitz, Mark; Schmitz, Pascal; Herrmann, Ulf; +5 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Herzog, Dirk; Röver, Tim; abdolov, sagynysh; Becker, Florian; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hummel, Maximilian;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Millington, Alice;

    This thesis examines cultural constructions of climate and temporality in eastern Nepal, focusing on Walung, a village in Taplejung District. Although the residents of Walung have long noticed manifestations of global climatic change, such observations were primarily attributed to a change in time (Tib. *dus*) rather than climate (Tib. *gnam gshis*). This interpretation often drew upon Buddhist prophetic narratives which foretell an imminent era of decline, termed '*kawa nyampa*' - a vision of degeneration attributed to Guru Rinpoche (Skt. Padmasambhava). In Walung, moral, meteorological, and temporal realms were deeply intertwined, with both climatic disruptions and perceived temporal changes attributed to the wider decay of human morality. The onset of '*kawa nyampa*' was traced to an evening in 1963 when flooding, unleashed by a semi-spiritual entity called the '*khangba*' (snow frog), devastated the village. The flood represented a temporal rupture, marking the end of a period of prosperity (*kawa sangbo*), and was interpreted as a collective punishment for spiritual transgressions. However, the temporal shifts that Walung residents have detected extend beyond climate-related phenomena. They also encompassed broader socioeconomic and political changes, including shifts in local diets and perceptions of declining life expectancy. The central claim of the thesis is that disruptions in climate are predominantly experienced as disruptions to *time* in upper Taplejung. Moreover, the Walung vision of a degenerate time (*kawa nyampa*) is rooted to far vaster landscape of changes than simply meteorology. In the words of one resident: “the change in time means a change in everything” – so too has the change in ‘everything’ produced a change in time. Building on ethnographic fieldwork in Taplejung District (November 2021-May 2022) and complemented by secondary field visits to Sikkim and Kathmandu, what begins as a study of climate change unfolds into an analysis of a far deeper sense of temporal disjunction. The thesis deciphers local observations of the stars, migratory birds, and cosmological narratives of deity movements as localised systems of time-reckoning. It also considers the embodied rhythms of life and death within aspects of Himalayan time perception. Against the backdrop of anthropogenic climate change and geopolitical ruptures at the Sino-Nepali border, however, these complex synchronicities are becoming destabilised, and time itself is unpicked at its seams. As environmental, geopolitical, and temporal fractures become more pronounced, Walung residents fear the fulfilment of prophetic visions of degeneration.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Radionovskaya, Svetlana;

    Since the industrial revolution, humans have caused profound climate changes, primarily by releasing geological carbon into the atmosphere and increasing atmospheric CO2, with current levels reaching >400ppm, a concentration unprecedented in the last 800ka. This has led to far-reaching socioeconomic consequences for human society and risks for all levels of ecosystem. A better understanding of rapid climatic changes is desperately needed in order to inform mitigation and adaptation strategies for future climate change. The last glacial cycle experienced orbital and millennial scale climatic variability, as indicated by high latitude ice core records and many other high-resolution marine and terrestrial records. These climatic changes included, but were not limited to, changes in atmospheric CO2, temperature, the hydroclimate, sea surface temperature (SST), ocean circulation and ocean biogeochemistry. The ocean is thought to have played a key role in controlling and modulating these changes through its impacts on both heat transport and the carbon cycle. High resolution marine sediment cores can be used to reconstruct these changes and may help to elucidate the mechanisms behind them. To date, most studies have focused on the deglaciation, and only sparse, low-resolution records exist for Marine Isotope Stage (MIS) 4, a key paleoclimatic interval for the last glacial inception. MIS 4 is characterised by a rapid CO2 drop of ~40ppm, which is comparable in duration and magnitude to the first rapid increase seen during the last deglaciation. It also involved a large drop in temperature, as indicated by Greenland and Antarctic ice cores, a decrease in sea level, and a possible slowdown of Atlantic Meridional Overturning Circulation (AMOC) as reconstructed from various proxy records. Several millennial events occurred during MIS 4, including Heinrich Stadial 6 and Dansgaard-Oeschger (DO) events 16-19. MIS 4 is thus an ideal interval to study and disentangle, glacial-interglacial and millennial variability. It also provides a window into the mechanisms of rapid CO2 change and their contribution to longer-term (orbital) climate change. Furthermore, the termination of MIS 4 allows for a comparison with the last deglaciation. In this thesis, I collect paleoceanographic data to improve coverage of this important interval from a suite of sediment cores retrieved from the Iberian Margin in the Northeast Atlantic, and a single core from the deep Sub-Antarctic Atlantic core site. This thesis ultimately aims to enhance the current understanding of the ocean’s role in and response to abrupt and orbital-scale climate changes during MIS 4 and to draw lessons on its wider implications for climate variability. Ultimately, this may contribute to our understanding of natural carbon cycle-climate feedbacks that will play a role in anthropogenic climate changes in the future. High resolution planktonic foraminifera Mg/Ca-based SST reconstructions from the Iberian Margin during MIS 4 show that certain aspects of the surface ocean response may not always track Greenland temperature and that Greenland ice core records do not serve as a universal template for climatic variability across the whole of the North Atlantic, likely due to the seasonal habitat biases associated with SST reconstructions. A strong hydroclimate signal is shown in planktic foraminifera δ18O from the Iberian Margin, whereby glacial (MIS 4) hydroclimate variability is coupled to a combination of the high-latitude North Atlantic changes and low-latitude tropical hydroclimate. Furthermore, for the first time, a high-resolution Mg/Ca-based SST record from the Iberian Margin, covering the last 85ka, demonstrates clear similarities between MIS 4 and MIS 2. This includes a similar decoupling of sub-tropical summer SST from Greenland temperatures recorded in ice core records during pre-HS 6 MIS 4 and the Last Glacial Maximum (LGM). The record also emphasises that the most severe (coldest and driest) conditions occurred in the midlatitude North Atlantic during Heinrich Stadials, rather than the ‘peak’ glacial conditions of MIS 4 or the LGM. The deep ocean likely played a key role in modulating CO2 on millennial and astronomical timescales, for example through changes in its respired carbon inventory. Conservative parameters that are indicative of deep-water hydrography, and by extension circulation, are deep water temperature (Tdw) and associated δ18Odw. Reconstructed Tdw changes from the Iberian Margin show a larger influence of southern sourced waters during MIS 4 and particularly during HS 6. Atlantic sector Southern Ocean (SO) Tdw closely follows Antarctic temperature, atmospheric CO2 and the mean ocean temperature, implying that the deep SO contributed significantly to the global ocean energy budget on multi-millennial time scales across MIS 4, likely mediated by buoyancy forcing in the SO. This in turn was likely linked to sea-ice expansion at the MIS 5a/4 transition, aided by a parallel shoaling of North Atlantic Deep Water (NADW) as suggested by the North Atlantic Tdw record. Together with (arguably smaller) contributions from reduced air-sea gas exchange efficiency in the SO, these changes would have lowered atmospheric CO2 during MIS 4, through their impact on the solubility- and soft tissue “pumps” (i.e. the ocean’s disequilibrium and respired carbon budgets). Because the amount of respired carbon in deep-water broadly scales with the dissolved oxygen concentration, bottom water O2 reconstructions, [O2]bw, were investigated for a depth transect from the Iberian Margin and for the Atlantic sector of the Southern Ocean. Qualitative benthic foraminiferal assemblage records from a depth transect on the Iberian Margin show that shifts in oxygenated environments are primarily controlled by the quality and/or quantity of Corg reaching the sea floor, rather than [O2]bw. There are distinct shifts in assemblages associated with more periodic and/or degraded Corg flux during MIS 4 and an indication of low [O2]bw during HS 6 at the mid-depths, however no significant changes in the flux of Corg (i.e. ‘export production’) were found. Multi-proxy foraminiferal geochemical [O2]bw reconstructions from the Iberian Margin show a gradual decrease in [O2]bw at the mid-depth North Atlantic during MIS 4 with a minimum during HS 6, likely controlled by ventilation changes (i.e. changes in ocean circulation, including water mass sourcing combined with active but diminished transport, or altered preformed ‘end-member’ values). In the meantime, the [O2]bw record from the South Atlantic closely follows atmospheric CO2, likely indicative of ocean ‘ventilation’ impacts on ocean-atmosphere carbon exchange. Indeed, the Southern Ocean appears to have represented a significant reservoir for sequestering CO2 away from the atmosphere during MIS 4, as indicated by the respired- and equilibrium carbon inventory changes that are implied by the [O2]bw and Tdw reconstructions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Streier, Robin; Wirtz, Siegmar; Aleksandrov, Krasimir; Gehrmann, Hans-Joachim; +5 Authors

    This research investigates the flight behavior of refuse-derived fuel (RDF) in a drop shaft using Computer Vision to obtain statistical data on the aerodynamic properties of the particles. Methods to determine 3D geometry models of complex-shaped particles by photogrammetry and to obtain time resolved particle positions and velocities are described. Furthermore, an approach to obtain the frequency distribution of drag and lift coefficients from photogrammetric analysis and drop shaft experiments is presented. The image evaluation is based on algorithms of the open-source libraries OpenCV, COLMAP as well as MeshLab and Open3D. The precision of the system is validated employing model particles with known geometry. The 3D particle models overestimate the particle surface area by 4.58 %, the position detection works with a mean deviation of 2.73 %. The average sink rate is calculated with an accuracy of 4.87 % and the drag coefficient with an accuracy of 2.08 %. Finally, the frequency distribution of four RDF fractions, namely, textiles, cardboard, 3D plastic particles and 2D plastic foils are presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Iqbal, Affan;

    Halide perovskites are the leading candidates for next-generation, low-cost optoelectronics with power conversion efficiencies well above 25%. However, operational stability remains a key challenge. Although there is an understanding that the microscale and nanoscale play a consequential role in determining the macroscopic performance and stability, significant gaps remain in the mechanistic understanding of degradation processes at the nanoscale and the mechanisms for stability in cation-alloyed systems. Nanoscale hexagonal phase impurities have been identified as problematic for operational stability, leading to both performance losses and morphological degradation. However, it is still unclear at what stage these phase impurities originate. Understanding this better is critical in order to mitigate the harmful effects of these phase impurities on performance and operational stability. Cation alloying is a commonly used technique in the field to mitigate these hexagonal phase impurities, although not without its challenges. In this thesis study, the nanoscale structural landscape of key halide perovskite compositions is studied. By taking snapshots of the perovskite at different states of the annealing process, the impact of phase impurities on device performance is characterised. Thereon, the mechanism by which composition dictates photostability in FA-rich perovskite absorber layers is studied. It is demonstrated that the composition impacts the degree of octahedral tilt, which is essential to restricting the transition to hexagonal phase impurities. Additionally, it is demonstrated that while a judicious mix of A-site cations can be used to stabilise the photoactive black phase of halide perovskites, it is challenging to achieve this homogeneously over large areas, necessitating a search for alternative or complementary approaches to stabilise perovskite via octahedral tilt. Using scanning electron diffraction (SED) studies, the spacegroup of additive-stabilised-CsPbI3 is demonstrated to be a low symmetry tilted γ-phase. Furthermore, using SED, the nanoscale structural landscape of mixed-phase CsPbI3 absorber layers is studied and it is demonstrated that both narrow-bandgap γ-phase and wide-bandgap δ-phase co-exist at the nanoscale, enabling stable and bright white-light emission. Overall, this thesis provides insights into the role of nanoscale structure in dictating the properties and behaviour of halide perovskites and offers rational guidelines for their optimisation and use in optoelectronic devices. Additionally, it is demonstrated that SED is a powerful tool for studying these materials at the atomic scale, allowing for the detailed characterisation of their structures and properties.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.