- home
- Search
Filters
Clear All- Energy Research
- 2025-2025
- GB
- Imperial College London
- Energy Research
- 2025-2025
- GB
- Imperial College London
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; Pie, Marcio. R; Murray, Kris. A; Pethiyagoda, Rohan; Hanken, James; Meegaskumbura, Madhava;Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors: Luis Badesa; Carlos Matamala; Goran Strbac;arXiv: 2308.10629
While the operating cost of electricity grids based on thermal generation was largely driven by the cost of fuel, as renewable penetration increases, ancillary services represent an increasingly large proportion of the running costs. Electric frequency is an important magnitude in highly renewable grids, as it becomes more volatile and therefore the cost related to maintaining it within safe bounds has significantly increased. So far, costs for frequency-containment ancillary services have been socialised in most countries, but it has become relevant to rethink this regulatory arrangement. In this paper, we discuss the issue of cost allocation for these services, highlighting the need to evolve towards a causation-based regulatory framework. We argue that parties responsible for creating the need for ancillary services should bear these costs. However, this would imply an important change in electricity market policy, therefore it is necessary to understand the impact on current and future investments on generation, as well as on electricity tariffs. Here we provide a mostly qualitative analysis of this issue, defining guidelines for practical implementation and further study. Published in journal Energy Policy
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; Pie, Marcio. R; Murray, Kris. A; Pethiyagoda, Rohan; Hanken, James; Meegaskumbura, Madhava;Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors: Luis Badesa; Carlos Matamala; Goran Strbac;arXiv: 2308.10629
While the operating cost of electricity grids based on thermal generation was largely driven by the cost of fuel, as renewable penetration increases, ancillary services represent an increasingly large proportion of the running costs. Electric frequency is an important magnitude in highly renewable grids, as it becomes more volatile and therefore the cost related to maintaining it within safe bounds has significantly increased. So far, costs for frequency-containment ancillary services have been socialised in most countries, but it has become relevant to rethink this regulatory arrangement. In this paper, we discuss the issue of cost allocation for these services, highlighting the need to evolve towards a causation-based regulatory framework. We argue that parties responsible for creating the need for ancillary services should bear these costs. However, this would imply an important change in electricity market policy, therefore it is necessary to understand the impact on current and future investments on generation, as well as on electricity tariffs. Here we provide a mostly qualitative analysis of this issue, defining guidelines for practical implementation and further study. Published in journal Energy Policy
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu