search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
308 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 1. No poverty
  • 3. Good health
  • GB
  • DE
  • AU
  • FI
  • English

  • Authors: Craig Kennedy; John Glenn; Natalie La Balme; Pierangelo Isernia; +2 Authors

    The aim of this study was to identify the attitudes of the public in the United States and in 12 European countries towards foreign policy issues and transatlantic issues. The survey concentrated on issues such as: United States and European Union (EU) leadership and relations, favorability towards certain countries, institutions and people, security, cooperation and the perception of threat including issues of concern with Afghanistan, Iran, and Russia, energy dependence, economic downturn, and global warming, Turkey and Turkish accession to the EU, promotion of democracy in other countries, and the importance of economic versus military power. Several questions asked of respondents pertained to voting and politics including whether they discussed political matters with friends and whether they attempted to persuade others close to them to share their views on politics which they held strong opinions about, vote intention, their assessment of the current United States President and upcoming presidential election, political party attachment, and left-right political self-placement. Demographic and other background information includes age, gender, race, ethnicity, religious affiliation and participation, age when stopped full-time education and stage at which full-time education completed, occupation, number of people aged 18 years and older living in the household, type of locality, region of residence, prior travel to the United States or Europe, and language of interview. computer-assisted personal interview (CAPI); computer-assisted telephone interview (CATI); paper and pencil interview (PAPI)The original data collection was carried out by TNS, Fait et Opinion -- Brussels on request of the German Marshall Fund of the United States.The codebook and setup files for this collection contain characters with diacritical marks used in many European languages.A split ballot was used for one or more questions in this survey. The variable SPLIT defines the separate groups.For data collection, the computer-assisted face-to-face interview was used in Poland, the paper and pencil interview was used in Bulgaria, Romania, Slovakia and Turkey, and the computer-assisted telephone interview was used in all other countries.Additional information on the Transatlantic Trends Survey is provided on the Transatlantic Trends Web site. (1) Multistage random sampling was implemented in the countries using face-to-face interviewing. Sampling points were selected according to region, and then random routes were conducted within these sampling points. Four callbacks were used for each address. The birthday rule was used to randomly select respondents within a household. (2) Random Digit Dialing was implemented in the countries using telephone interviewing. Eight callbacks were used for each telephone number. The birthday rule was used to randomly select respondents within a household. The adult population aged 18 years and over in 13 countries: Bulgaria, France, Germany, Italy, the Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Turkey, the United Kingdom, and the United States. Smallest Geographic Unit: country Response Rates: The total response rate for all countries surveyed is 23 percent. Please refer to the "Technical Note" in the ICPSR codebook for additional information about response rate. Please refer to the "Technical Note" in the ICPSR codebook for further information about weighting. Datasets: DS1: Transatlantic Trends Survey, 2008

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;

    Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;

    We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.4228/zal...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.4228/zal...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gütschow, Johannes;

    The PRIMAP-hist Socio-Eco dataset combines several published datasets to create a comprehensive set of population and Gross domestic product (GDP) pathways for every country covering the years 1850 to 2017, and all UNFCCC (United Nations Framework Convention on Climate Change) member states, as well as most non-UNFCCC territories. The data has no sector resolution. List of datasets included in this data publication: (1) PMHSOCIOECO21_GDP_26-Jul-2019.csv: contains the GDP data for all countries(2) PMHSOCIOECO21_Population_26-Jul-2019.csv: contains the population data for all countries(3) PRIMAP-hist_SocioEco_data_description.pdf: including CHANGELOG(all files are also included in the .zip folder) When using this dataset or one of its updates, please cite the DOI of the precise version of the dataset. Please consider also citing the relevant original sources when using the PRIMAP-hist Socio-Eco dataset. See the full citations in the References section further below. A data description article is in preparation. Until it is published we refer to the description article of the PRIMAP-hist emissions time series for the methodology used. SOURCES: - UN World Population Prospects 2019 (UN2019)- World Bank World Development Indicators 2019 (July) (WDI2019B). We use the *NY.GDP.MKTP.PP.KD* variable for GDP.- Penn World Table version 9.1 (PWT91). We use the *cgdpe* variable for GDP (Robert and Feenstra, 2019; Feenstra et al., 2015)- Maddison Project Database 2018 (MPD2018). We use the *cgdppc* variable for GDP (Bolt et al,, 2018)- Anthropogenic land use estimates for the Holocene – HYDE 3.2 (HYDE32)(Klein Goldewijk, 2017)- Continuous national gross domestic product (GDP) time series for 195 countries: past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100) (Geiger2018, Geiger and Frieler, 2018)Full references are available in the data description document. Methods:Country resolved data is combined from different sources using the PRIMAP emissions module (Nabel et. al., 2011). It is supplemented with growth rates from regionally resolved sources and numerical extrapolations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZ Data Servicesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GFZ Data Services
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2019
    Data sources: B2FIND
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZ Data Servicesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GFZ Data Services
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2019
      Data sources: B2FIND
  • Authors: Jo-Anne Ferreira; Charles Arcodia; Debbie Cotterell;

    An important outcome of a university business education is to shape individuals who are capable of working in and operating businesses that deliver economically profitable, socially responsible and ecologically viable services. In preparing future sustainable tourism workers, universities also need to design curricula that develop students’ skills in critical thinking and acting with a sense of ethics and empathy. Research evidence indicates, however, that students often graduate without these skills. A potential reason for this is the design of tourism curricula based on weaker conceptualisations of sustainability (e.g. triple bottom line) as opposed to stronger conceptualisations of sustainability (more holistic and inclusive approaches). Another possible reason could be that educators are not successfully cultivating students’ abilities to think in more complex ways about sustainability nor are they adequately acknowledging the ways in which their students make sense of a complex concept such as sustainability. To add to the complexity of the sustainability phenomenon, there is growing international pressure on the tourism industry by the United Nations (UN) to work towards achieving the 17 global sustainable development goals (SDGs) by 2030. Despite recognition that tourism can help contribute towards the SDGs, a UN report provides evidence that tourism policymakers are not actively and sufficiently engaging with the SDGs. The UN’s recognition of the tourism industry’s ability to advance the SDGS through economic growth (SDG 8) is further problematic, even if this is seen as sustainable economic growth. The term ‘sustainable development’ has long been contested as a weaker form of sustainability due to its progrowth and development emphasis. Given the current global overtourism crisis, it seems more important than ever that universities pay attention to how sustainable tourism is being interpreted and implemented. This is necessary if educators are to truly encourage stronger sustainability mindsets in future tourism workers and change makers. Therefore, the overarching aim of this thesis is to explore how conceptualisations of strong sustainability amongst university students can be strengthened. This study is the first to explore the usefulness of variation theory in strengthening conceptualisations of strong sustainability amongst university tourism students. It provides the tourism literature with evidence of: 1) the conceptualisation of sustainability currently being integrated into undergraduate tourism courses by universities internationally; 2) the benefits of phenomenography as a research approach for studying qualitative difference in understanding concepts such as sustainability and sustainable tourism; 3) the viability of using a learning study approach to develop ‘stronger’ understandings of sustainability; and 4) the potential of variation theory to explain how individuals acquire understandings of sustainability. The empirical research is presented in three studies to address three main research objectives. The first research objective was ‘to identify the conceptualisations of sustainability currently being used in university undergraduate sustainable tourism courses internationally’. The first study, in Chapter III, identifies whether ‘strong sustainability’, sustainability skills and the SDGs are currently underpinning 60 international sustainable tourism courses. Chapter IV ‘explores the different ways in which tourism students, academics and industry practitioners currently conceptualise sustainability’ by conducting phenomenographic interviews with 20 participants. A continuum of less to more complex understandings of sustainability was then developed to identify qualitatively different ways of understanding sustainability. The third research objective was ‘to investigate alternate teaching and learning approaches that might encourage stronger conceptualisations of sustainability amongst undergraduate tourism students’. Chapter V, discusses how the continuum explored in Chapter IV was used in an Australian university sustainable tourism course, underpinned by variation theory, to implement a learning study to enhance students’ understandings of sustainability and the conceptual complexity of the term sustainability. The findings revealed that internationally, sustainable tourism courses do not include ‘very strong’ conceptualisations of sustainability, and that sustainability pedagogies (such as systems and holistic thinking) are not widely used. Phenomenographic interviews with (predominantly Australian-based) lecturers, students and industry workers initially revealed four qualitatively different ways of understanding sustainability ranging from weak to very strong understandings of sustainability. Whilst many tourism lecturers seemed to show understandings of moderate to strong sustainability, very few showed very strong sustainability conceptualisations. This implies that some tourism courses may potentially be designed and underpinned by a weak to moderate articulation of sustainability. These interviews also revealed that industry owners tended to demonstrate a much stronger sustainability understanding than tourism lecturers. Most industry owners had a longer-term focus and key motives centred on giving back to society and a ‘pay-it-forward’ attitude towards the environment. Further findings in the learning study revealed that variation theory offers a valuable teaching and learning strategy to help develop more complex conceptualisations of ‘very strong’ sustainability within a university tourism course. Based on these findings, a number of implications for theory and practice are examined. These include recommendations regarding the design of sustainable tourism courses such as strengthening the sustainability conceptualisations underpinning them; better integration of the SDGs; and the development of critical and systems thinking skills. The three studies also provide examples for use in practice. For example, in Chapter III, a questioning strategy is provided. The phenomenographic continuum in Chapter IV provides a teaching and learning tool for educators to incorporate into sustainability courses to help students’ understandings of the phenomena. Chapter V provides insight into how this continuum can be incorporated into a learning study and provides practical ways of using variation theory. By implementing the continuum into teaching and learning activities, both educators and industry can develop deeper and stronger conceptualisations of sustainability for the tourism industry. Limitations of the study are discussed, and recommendations put forward for future research. In addition, ways in which educational institutions and governments can use the findings of the study to enhance teaching and learning, both in the classroom and industry workplaces, are discussed. Such enhancements will provide a foundation of ‘strong sustainability’ mindsets within our future tourism industry, which in turn will contribute to the 2030 SDGs being achieved.

    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Davies, Simon;

    Achieving reductions in global anthropogenic emissions necessary to mitigate the worst effects of climate change will require significant reductions in energy demand. However, there are concerns that energy demand reductions involving lifestyle and behavioural changes might negatively impact peoples’ wellbeing. The work in this thesis studies the impacts of how people spend their time – commonly known as time-use – to try to understand whether this is the true, or whether energy demand could be reduced while improving wellbeing. Using the UK as a case study, this issue is examined by determining the energy use and wellbeing attributes of different activities and lifestyles, by modelling the impacts of shifts in time-use between activities, and by comparing the importance of three specific changes that might impact future energy use and wellbeing. Firstly, based upon existing literature it is identified that there is a need to better understand the combined energy and wellbeing impacts of different activities and lifestyles. Combining UK time-use and energy consumption data, the energy intensity, enjoyment and sociability of time is studied. Comparing these metrics for different activities suggests that since the most enjoyable (and in some cases sociable) activities are generally the least energy-intensive, acceptable (or popular) lifestyle changes might exist that reduce national energy use and improve wellbeing. However, studying changes between 2000 and 2015 shows that while the population’s time became less energy-intensive, there was little change in average enjoyment and a reduction in sociability. Segmenting the population by age reveals that an ageing population could present a challenge since energy use broadly increases with age-group while social contact reduces. However, comparing occupations highlights opportunities for specific actions that could improve wellbeing and reduce energy use, while regional differences suggest that wellbeing might be improved without increasing energy use. Having determined the energy intensity and wellbeing associated with different uses of time, the impacts of possible time-use changes are then studied. Acknowledging the difficulty in trying to predict how people might choose to re-allocate time in different situations, a sensitivity-based approach is used to study the impacts of a wide range of possible shifts in time between activities. The approach is then applied to explore the impacts of extreme lifestyle changes associated with COVID-19 lockdown measures in the UK and validated against real-world observations during the pandemic. While activity changes associated with lockdown measures reduce energy use, there are varying implications for peoples’ wellbeing, with the youngest appearing to be most negatively impacted but those able to work from home potentially benefiting. Although lockdown measures prevented some of the most enjoyable and sociable activities from happening, alternative activity changes could be supported in future that reduce energy use while improving wellbeing. Finally, time is used as a basis to compare the importance of different types of changes and help to prioritise actions. This is demonstrated by studying the combined impacts of three example changes – greater home working, changes in commuting transport modes and car intensity – on office workers’ energy use and wellbeing. The results show that working from home could have a greater impact upon office workers’ average energy use and enjoyment than changes to commuting modes, but that the social contact provided by the office could be difficult to replace. The study also demonstrates different ways that energy savings might be achieved through home working, shifts in commuting modes and changes to vehicle intensity. This approach could be used more widely to compare a broader range of changes, understand their interactions and different ways to achieve outcomes, and help to identify those changes that are most important to reduce energy use and improve wellbeing. The work presented in this thesis shows that time-use can be used as a basis to examine energy demand and wellbeing together. Using time-use to link these issues enables trade-offs or co-benefits due to different uses of time to be determined and allows rebound effects to be considered. The results suggest that reducing energy use can be achieved at the same time as improving wellbeing. The hope is that the approaches and findings presented in this thesis can provide a basis for wider discussion and a platform for future work to support climate change mitigation strategies that are positive for both the environment and society.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matias, Denise Margaret; Fernández, Raúl; Hutfils, Marie-Lena; Winges, Maik;

    In the face of increasingly frequent extreme weather events, the need to manage climate risk becomes more urgent, especially for the most vulnerable countries and communities. With the aim of reducing vulnerability, climate risk transfer in the form of climate risk insurance (CRI) has been gaining attention in climate policy discussions. When properly designed, CRI acts as a safety net against climate change impacts by providing financial support after an extreme weather event. Two main types of insurance enable payouts: indemnity (traditional) insurance or predefined parameters (index-based) insurance. Individuals, groups, or even governments may take out policies with either type of insurance and receive payouts directly (insurer to beneficiary payout) or indirectly (insurer to aggregator to beneficiary payout). Direct insurance is usually implemented at the micro-level with individual policyholders. Indirect insurance is usually implemented through group contracts at the meso-level through risk aggregators and at the macro-level through the state. While promising, risk transfer in the form of CRI also has its share of challenges. Within the United Nations Framework Convention on Climate Change, the lack of accessibility and affordability of CRI for poor and vulnerable groups have been identified as barriers to uptake. In light of climate justice, asking the poor and climate-vulnerable groups - most of whom do not contribute substantially to anthropogenic climate change - to solely carry the financial burden of risk transfer is anything but just. Employing a human rights-based approach to CRI may ensure that the resilience of poor and climate-vulnerable groups is enhanced in a climate-just manner. Indigenous peoples are some of the poorest and most climate vulnerable groups. Often marginalised, they rarely have access to social protection. The strong communal relationship of indigenous peoples facilitates their participation in community-based organisations (CBOs). CBOs are a suitable vehicle for meso-insurance, in which risk is aggregated and an insurance policy belongs to a group. In this way, CBOs can facilitate service provision that would otherwise be beyond the reach of individuals. Conclusions of this briefing paper draw on a conceptual analysis of meso-insurance and the results of field research conducted in March 2018 with indigenous Palaw’ans in the Philippines. We find that CRI needs to be attuned to the differential vulnerabilities and capacities of its beneficiaries. This is particularly true for poor and vulnerable people, for whom issues of accessibility and affordability need to be managed, and human rights and pro-poor approaches need to be ensured. In this context, meso-insurance is a promising approach when it provides accessibility and affordability and promotes a pro-poor and human rights-based approach of risk transfer by: Properly identifying and involving target beneficiaries and duty-bearers by employing pro-poor and human rights principles. Employing measures to improve the financial literacy of target beneficiaries. Designing insurance models from the bottom up. Briefing Paper

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EconStorarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    EconStor
    Report . 2018
    Data sources: EconStor
    https://dx.doi.org/10.23661/bp...
    Other literature type . 2018
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EconStorarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      EconStor
      Report . 2018
      Data sources: EconStor
      https://dx.doi.org/10.23661/bp...
      Other literature type . 2018
      Data sources: Datacite
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
308 Research products
  • Authors: Craig Kennedy; John Glenn; Natalie La Balme; Pierangelo Isernia; +2 Authors

    The aim of this study was to identify the attitudes of the public in the United States and in 12 European countries towards foreign policy issues and transatlantic issues. The survey concentrated on issues such as: United States and European Union (EU) leadership and relations, favorability towards certain countries, institutions and people, security, cooperation and the perception of threat including issues of concern with Afghanistan, Iran, and Russia, energy dependence, economic downturn, and global warming, Turkey and Turkish accession to the EU, promotion of democracy in other countries, and the importance of economic versus military power. Several questions asked of respondents pertained to voting and politics including whether they discussed political matters with friends and whether they attempted to persuade others close to them to share their views on politics which they held strong opinions about, vote intention, their assessment of the current United States President and upcoming presidential election, political party attachment, and left-right political self-placement. Demographic and other background information includes age, gender, race, ethnicity, religious affiliation and participation, age when stopped full-time education and stage at which full-time education completed, occupation, number of people aged 18 years and older living in the household, type of locality, region of residence, prior travel to the United States or Europe, and language of interview. computer-assisted personal interview (CAPI); computer-assisted telephone interview (CATI); paper and pencil interview (PAPI)The original data collection was carried out by TNS, Fait et Opinion -- Brussels on request of the German Marshall Fund of the United States.The codebook and setup files for this collection contain characters with diacritical marks used in many European languages.A split ballot was used for one or more questions in this survey. The variable SPLIT defines the separate groups.For data collection, the computer-assisted face-to-face interview was used in Poland, the paper and pencil interview was used in Bulgaria, Romania, Slovakia and Turkey, and the computer-assisted telephone interview was used in all other countries.Additional information on the Transatlantic Trends Survey is provided on the Transatlantic Trends Web site. (1) Multistage random sampling was implemented in the countries using face-to-face interviewing. Sampling points were selected according to region, and then random routes were conducted within these sampling points. Four callbacks were used for each address. The birthday rule was used to randomly select respondents within a household. (2) Random Digit Dialing was implemented in the countries using telephone interviewing. Eight callbacks were used for each telephone number. The birthday rule was used to randomly select respondents within a household. The adult population aged 18 years and over in 13 countries: Bulgaria, France, Germany, Italy, the Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Turkey, the United Kingdom, and the United States. Smallest Geographic Unit: country Response Rates: The total response rate for all countries surveyed is 23 percent. Please refer to the "Technical Note" in the ICPSR codebook for additional information about response rate. Please refer to the "Technical Note" in the ICPSR codebook for further information about weighting. Datasets: DS1: Transatlantic Trends Survey, 2008

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;

    Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;

    We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.4228/zal...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.4228/zal...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gütschow, Johannes;

    The PRIMAP-hist Socio-Eco dataset combines several published datasets to create a comprehensive set of population and Gross domestic product (GDP) pathways for every country covering the years 1850 to 2017, and all UNFCCC (United Nations Framework Convention on Climate Change) member states, as well as most non-UNFCCC territories. The data has no sector resolution. List of datasets included in this data publication: (1) PMHSOCIOECO21_GDP_26-Jul-2019.csv: contains the GDP data for all countries(2) PMHSOCIOECO21_Population_26-Jul-2019.csv: contains the population data for all countries(3) PRIMAP-hist_SocioEco_data_description.pdf: including CHANGELOG(all files are also included in the .zip folder) When using this dataset or one of its updates, please cite the DOI of the precise version of the dataset. Please consider also citing the relevant original sources when using the PRIMAP-hist Socio-Eco dataset. See the full citations in the References section further below. A data description article is in preparation. Until it is published we refer to the description article of the PRIMAP-hist emissions time series for the methodology used. SOURCES: - UN World Population Prospects 2019 (UN2019)- World Bank World Development Indicators 2019 (July) (WDI2019B). We use the *NY.GDP.MKTP.PP.KD* variable for GDP.- Penn World Table version 9.1 (PWT91). We use the *cgdpe* variable for GDP (Robert and Feenstra, 2019; Feenstra et al., 2015)- Maddison Project Database 2018 (MPD2018). We use the *cgdppc* variable for GDP (Bolt et al,, 2018)- Anthropogenic land use estimates for the Holocene – HYDE 3.2 (HYDE32)(Klein Goldewijk, 2017)- Continuous national gross domestic product (GDP) time series for 195 countries: past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100) (Geiger2018, Geiger and Frieler, 2018)Full references are available in the data description document. Methods:Country resolved data is combined from different sources using the PRIMAP emissions module (Nabel et. al., 2011). It is supplemented with growth rates from regionally resolved sources and numerical extrapolations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZ Data Servicesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GFZ Data Services
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2019
    Data sources: B2FIND
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZ Data Servicesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GFZ Data Services
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2019
      Data sources: B2FIND
  • Authors: Jo-Anne Ferreira; Charles Arcodia; Debbie Cotterell;

    An important outcome of a university business education is to shape individuals who are capable of working in and operating businesses that deliver economically profitable, socially responsible and ecologically viable services. In preparing future sustainable tourism workers, universities also need to design curricula that develop students’ skills in critical thinking and acting with a sense of ethics and empathy. Research evidence indicates, however, that students often graduate without these skills. A potential reason for this is the design of tourism curricula based on weaker conceptualisations of sustainability (e.g. triple bottom line) as opposed to stronger conceptualisations of sustainability (more holistic and inclusive approaches). Another possible reason could be that educators are not successfully cultivating students’ abilities to think in more complex ways about sustainability nor are they adequately acknowledging the ways in which their students make sense of a complex concept such as sustainability. To add to the complexity of the sustainability phenomenon, there is growing international pressure on the tourism industry by the United Nations (UN) to work towards achieving the 17 global sustainable development goals (SDGs) by 2030. Despite recognition that tourism can help contribute towards the SDGs, a UN report provides evidence that tourism policymakers are not actively and sufficiently engaging with the SDGs. The UN’s recognition of the tourism industry’s ability to advance the SDGS through economic growth (SDG 8) is further problematic, even if this is seen as sustainable economic growth. The term ‘sustainable development’ has long been contested as a weaker form of sustainability due to its progrowth and development emphasis. Given the current global overtourism crisis, it seems more important than ever that universities pay attention to how sustainable tourism is being interpreted and implemented. This is necessary if educators are to truly encourage stronger sustainability mindsets in future tourism workers and change makers. Therefore, the overarching aim of this thesis is to explore how conceptualisations of strong sustainability amongst university students can be strengthened. This study is the first to explore the usefulness of variation theory in strengthening conceptualisations of strong sustainability amongst university tourism students. It provides the tourism literature with evidence of: 1) the conceptualisation of sustainability currently being integrated into undergraduate tourism courses by universities internationally; 2) the benefits of phenomenography as a research approach for studying qualitative difference in understanding concepts such as sustainability and sustainable tourism; 3) the viability of using a learning study approach to develop ‘stronger’ understandings of sustainability; and 4) the potential of variation theory to explain how individuals acquire understandings of sustainability. The empirical research is presented in three studies to address three main research objectives. The first research objective was ‘to identify the conceptualisations of sustainability currently being used in university undergraduate sustainable tourism courses internationally’. The first study, in Chapter III, identifies whether ‘strong sustainability’, sustainability skills and the SDGs are currently underpinning 60 international sustainable tourism courses. Chapter IV ‘explores the different ways in which tourism students, academics and industry practitioners currently conceptualise sustainability’ by conducting phenomenographic interviews with 20 participants. A continuum of less to more complex understandings of sustainability was then developed to identify qualitatively different ways of understanding sustainability. The third research objective was ‘to investigate alternate teaching and learning approaches that might encourage stronger conceptualisations of sustainability amongst undergraduate tourism students’. Chapter V, discusses how the continuum explored in Chapter IV was used in an Australian university sustainable tourism course, underpinned by variation theory, to implement a learning study to enhance students’ understandings of sustainability and the conceptual complexity of the term sustainability. The findings revealed that internationally, sustainable tourism courses do not include ‘very strong’ conceptualisations of sustainability, and that sustainability pedagogies (such as systems and holistic thinking) are not widely used. Phenomenographic interviews with (predominantly Australian-based) lecturers, students and industry workers initially revealed four qualitatively different ways of understanding sustainability ranging from weak to very strong understandings of sustainability. Whilst many tourism lecturers seemed to show understandings of moderate to strong sustainability, very few showed very strong sustainability conceptualisations. This implies that some tourism courses may potentially be designed and underpinned by a weak to moderate articulation of sustainability. These interviews also revealed that industry owners tended to demonstrate a much stronger sustainability understanding than tourism lecturers. Most industry owners had a longer-term focus and key motives centred on giving back to society and a ‘pay-it-forward’ attitude towards the environment. Further findings in the learning study revealed that variation theory offers a valuable teaching and learning strategy to help develop more complex conceptualisations of ‘very strong’ sustainability within a university tourism course. Based on these findings, a number of implications for theory and practice are examined. These include recommendations regarding the design of sustainable tourism courses such as strengthening the sustainability conceptualisations underpinning them; better integration of the SDGs; and the development of critical and systems thinking skills. The three studies also provide examples for use in practice. For example, in Chapter III, a questioning strategy is provided. The phenomenographic continuum in Chapter IV provides a teaching and learning tool for educators to incorporate into sustainability courses to help students’ understandings of the phenomena. Chapter V provides insight into how this continuum can be incorporated into a learning study and provides practical ways of using variation theory. By implementing the continuum into teaching and learning activities, both educators and industry can develop deeper and stronger conceptualisations of sustainability for the tourism industry. Limitations of the study are discussed, and recommendations put forward for future research. In addition, ways in which educational institutions and governments can use the findings of the study to enhance teaching and learning, both in the classroom and industry workplaces, are discussed. Such enhancements will provide a foundation of ‘strong sustainability’ mindsets within our future tourism industry, which in turn will contribute to the 2030 SDGs being achieved.

    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Davies, Simon;

    Achieving reductions in global anthropogenic emissions necessary to mitigate the worst effects of climate change will require significant reductions in energy demand. However, there are concerns that energy demand reductions involving lifestyle and behavioural changes might negatively impact peoples’ wellbeing. The work in this thesis studies the impacts of how people spend their time – commonly known as time-use – to try to understand whether this is the true, or whether energy demand could be reduced while improving wellbeing. Using the UK as a case study, this issue is examined by determining the energy use and wellbeing attributes of different activities and lifestyles, by modelling the impacts of shifts in time-use between activities, and by comparing the importance of three specific changes that might impact future energy use and wellbeing. Firstly, based upon existing literature it is identified that there is a need to better understand the combined energy and wellbeing impacts of different activities and lifestyles. Combining UK time-use and energy consumption data, the energy intensity, enjoyment and sociability of time is studied. Comparing these metrics for different activities suggests that since the most enjoyable (and in some cases sociable) activities are generally the least energy-intensive, acceptable (or popular) lifestyle changes might exist that reduce national energy use and improve wellbeing. However, studying changes between 2000 and 2015 shows that while the population’s time became less energy-intensive, there was little change in average enjoyment and a reduction in sociability. Segmenting the population by age reveals that an ageing population could present a challenge since energy use broadly increases with age-group while social contact reduces. However, comparing occupations highlights opportunities for specific actions that could improve wellbeing and reduce energy use, while regional differences suggest that wellbeing might be improved without increasing energy use. Having determined the energy intensity and wellbeing associated with different uses of time, the impacts of possible time-use changes are then studied. Acknowledging the difficulty in trying to predict how people might choose to re-allocate time in different situations, a sensitivity-based approach is used to study the impacts of a wide range of possible shifts in time between activities. The approach is then applied to explore the impacts of extreme lifestyle changes associated with COVID-19 lockdown measures in the UK and validated against real-world observations during the pandemic. While activity changes associated with lockdown measures reduce energy use, there are varying implications for peoples’ wellbeing, with the youngest appearing to be most negatively impacted but those able to work from home potentially benefiting. Although lockdown measures prevented some of the most enjoyable and sociable activities from happening, alternative activity changes could be supported in future that reduce energy use while improving wellbeing. Finally, time is used as a basis to compare the importance of different types of changes and help to prioritise actions. This is demonstrated by studying the combined impacts of three example changes – greater home working, changes in commuting transport modes and car intensity – on office workers’ energy use and wellbeing. The results show that working from home could have a greater impact upon office workers’ average energy use and enjoyment than changes to commuting modes, but that the social contact provided by the office could be difficult to replace. The study also demonstrates different ways that energy savings might be achieved through home working, shifts in commuting modes and changes to vehicle intensity. This approach could be used more widely to compare a broader range of changes, understand their interactions and different ways to achieve outcomes, and help to identify those changes that are most important to reduce energy use and improve wellbeing. The work presented in this thesis shows that time-use can be used as a basis to examine energy demand and wellbeing together. Using time-use to link these issues enables trade-offs or co-benefits due to different uses of time to be determined and allows rebound effects to be considered. The results suggest that reducing energy use can be achieved at the same time as improving wellbeing. The hope is that the approaches and findings presented in this thesis can provide a basis for wider discussion and a platform for future work to support climate change mitigation strategies that are positive for both the environment and society.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matias, Denise Margaret; Fernández, Raúl; Hutfils, Marie-Lena; Winges, Maik;

    In the face of increasingly frequent extreme weather events, the need to manage climate risk becomes more urgent, especially for the most vulnerable countries and communities. With the aim of reducing vulnerability, climate risk transfer in the form of climate risk insurance (CRI) has been gaining attention in climate policy discussions. When properly designed, CRI acts as a safety net against climate change impacts by providing financial support after an extreme weather event. Two main types of insurance enable payouts: indemnity (traditional) insurance or predefined parameters (index-based) insurance. Individuals, groups, or even governments may take out policies with either type of insurance and receive payouts directly (insurer to beneficiary payout) or indirectly (insurer to aggregator to beneficiary payout). Direct insurance is usually implemented at the micro-level with individual policyholders. Indirect insurance is usually implemented through group contracts at the meso-level through risk aggregators and at the macro-level through the state. While promising, risk transfer in the form of CRI also has its share of challenges. Within the United Nations Framework Convention on Climate Change, the lack of accessibility and affordability of CRI for poor and vulnerable groups have been identified as barriers to uptake. In light of climate justice, asking the poor and climate-vulnerable groups - most of whom do not contribute substantially to anthropogenic climate change - to solely carry the financial burden of risk transfer is anything but just. Employing a human rights-based approach to CRI may ensure that the resilience of poor and climate-vulnerable groups is enhanced in a climate-just manner. Indigenous peoples are some of the poorest and most climate vulnerable groups. Often marginalised, they rarely have access to social protection. The strong communal relationship of indigenous peoples facilitates their participation in community-based organisations (CBOs). CBOs are a suitable vehicle for meso-insurance, in which risk is aggregated and an insurance policy belongs to a group. In this way, CBOs can facilitate service provision that would otherwise be beyond the reach of individuals. Conclusions of this briefing paper draw on a conceptual analysis of meso-insurance and the results of field research conducted in March 2018 with indigenous Palaw’ans in the Philippines. We find that CRI needs to be attuned to the differential vulnerabilities and capacities of its beneficiaries. This is particularly true for poor and vulnerable people, for whom issues of accessibility and affordability need to be managed, and human rights and pro-poor approaches need to be ensured. In this context, meso-insurance is a promising approach when it provides accessibility and affordability and promotes a pro-poor and human rights-based approach of risk transfer by: Properly identifying and involving target beneficiaries and duty-bearers by employing pro-poor and human rights principles. Employing measures to improve the financial literacy of target beneficiaries. Designing insurance models from the bottom up. Briefing Paper

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EconStorarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    EconStor
    Report . 2018
    Data sources: EconStor
    https://dx.doi.org/10.23661/bp...
    Other literature type . 2018
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EconStorarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      EconStor
      Report . 2018
      Data sources: EconStor
      https://dx.doi.org/10.23661/bp...
      Other literature type . 2018
      Data sources: Datacite