search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
29,344 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2. Zero hunger
  • US
  • GB
  • FR
  • AU
  • FI
  • CO

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; +4 Authors

    The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2K
    visibilityviews1,826
    downloaddownloads1,165
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Heath, L.; Salinger, M. J.; Falkland, T.; Hansen, J.; +9 Authors

    The impacts of increasing natural climate disasters are threatening food security in the Asia-Pacific region. Rice is Asia’s most important staple food. Climate variability and change directly impact rice production, through changes in rainfall, temperature and CO2 concentrations. The key for sustainable rice crop is water management. Adaptation can occur through shifts of cropping to higher latitudes and can profit from river systems (via irrigation) so far not considered. New opportunities arise to produce more than one crop per year in cooler areas. Asian wheat production in 2005 represents about 43 % of the global total. Changes in agronomic practices, such as earlier plant dates and cultivar substitution will be required. Fisheries play a crucial role in providing food security with the contribution of fish to dietary animal protein being very high in the region – up to 90 % in small island developing states (SIDS). With the warming of the Pacific and Indian Oceans and increased acidification, marine ecosystems are presently under stress. Despite these trends, maintaining or enhancing food production from the sea is critical. However, future sustainability must be maintained whilst also securing biodiversity conservation. Improved fisheries management to address the existing non-climate threats remains paramount in the Indian and Pacific Oceans with sustainable management regimes being established. Climate-related impacts are expected to increase in magnitude over the coming decades, thus preliminary adaptation to climate change is valuable.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-94...
    Part of book or chapter of book . 2013 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-94...
      Part of book or chapter of book . 2013 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wolf, Benjamin; Zheng, Xunhua; Bruggemann, Nicolas; Chen, Weiwei; +6 Authors

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010
    Nature
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    262
    citations262
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010
      Nature
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; +2 Authors

    SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Public Administration and Development
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Public Administration and Development
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Thomas Lübberstedt; Yanhai Yin; Maria G. Salas Fernandez; Philip W. Becraft;

    The increasing demand for lignocellulosic biomass for the production of biofuels provides value to vegetative plant tissue and leads to a paradigm shift for optimizing plant architecture in bioenergy crops. Plant height (PHT) is among the most important biomass yield components and is the focus of this review, with emphasis on the energy grasses maize (Zea mays) and sorghum (Sorghum bicolor). We discuss the scientific advances in the identification of PHT quantitative trait loci (QTLs) and the understanding of pathways and genes controlling PHT, especially gibberellins and brassinosteroids. We consider pleiotropic effects of QTLs or genes affecting PHT on other agronomically important traits and, finally, we discuss strategies for applying this knowledge to the improvement of dual-purpose or dedicated bioenergy crops.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trends in Plant Science
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    204
    citations204
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trends in Plant Science
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen P. Long; Frank G. Dohleman;

    Abstract In the first side-by-side large-scale trials of these two C4 crops in the U.S. Corn Belt, Miscanthus (Miscanthus × giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (ϵ i) and its conversion into aboveground biomass (ϵ ca). Averaged over two growing seasons, ϵ ca did not differ, but ϵ i was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO2 uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO2 responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO2 assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C4 photosynthetic productivity is not achieved by modern temperate maize cultivars.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1104/pp.109...
    Article . 2009 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://www.plantphysiol.org/co...
    Article
    License: CC BY
    Data sources: UnpayWall
    PLANT PHYSIOLOGY
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    321
    citations321
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1104/pp.109...
      Article . 2009 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://www.plantphysiol.org/co...
      Article
      License: CC BY
      Data sources: UnpayWall
      PLANT PHYSIOLOGY
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; +6 Authors

    AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    135
    citations135
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shengnan Hou; Xiaofeng Ji; Lin Tang; Na Zheng; +1 Authors

    A pot experiment was undertaken to investigate the effects of Cd and Cu mixtures to growth and nutrients (sugar, carotene or vitamin C) of carrot and pakchoi under greenhouse cultivation condition. The study included: (a) physical-chemical properties of soil and soil animals in response to Cd and Cu stress; (b) bioaccumulation of heavy metals, length, biomass, contents of sugar and carotene (vitamin C) of carrot and pakchoi; (c) estimation the effects of Cd and Cu mixtures by multivariate regression analysis. The results implied that heavy metals impacted negative influence on soil animals' abundance. The metals contents in plants increased obviously with Cd and Cu contamination in soil. The biomass production and nutrients declined with Cd and Cu contents increasing. Cd (20 mg kg-1) treatment caused maximum reduction of sugar content (45.29%) in carrot root; maximum reduction in carotene content (75.73%) in carrot, 75.1% sugar content reduction and 70.58% vitamin C content reduction in pakchoi shoots were observed with addition of Cd (20 mg kg-1) and Cu (400 mg kg-1) mixture. The results of multivariate regression analysis indicated that combination of Cd and Cu exerts negative effects to both carrot and pakchoi, and both growth and nutrients were negatively correlated with metals concentrations. It is concluded that the Cd and Cu mixtures caused toxic damage to vegetable plants as Cd and Cu gradient concentrations increased.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yueling Qi; Adam Ossowicki; Xiaomei Yang; Esperanza Huerta Lwanga; +3 Authors

    Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Hazardous Materials
    Article . 2020 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Hazardous Materials
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Wageningen Staff Publications
    Article . 2020
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    423
    citations423
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Hazardous Materials
      Article . 2020 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Hazardous Materials
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Wageningen Staff Publications
      Article . 2020
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
29,344 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; +4 Authors

    The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2K
    visibilityviews1,826
    downloaddownloads1,165
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Heath, L.; Salinger, M. J.; Falkland, T.; Hansen, J.; +9 Authors

    The impacts of increasing natural climate disasters are threatening food security in the Asia-Pacific region. Rice is Asia’s most important staple food. Climate variability and change directly impact rice production, through changes in rainfall, temperature and CO2 concentrations. The key for sustainable rice crop is water management. Adaptation can occur through shifts of cropping to higher latitudes and can profit from river systems (via irrigation) so far not considered. New opportunities arise to produce more than one crop per year in cooler areas. Asian wheat production in 2005 represents about 43 % of the global total. Changes in agronomic practices, such as earlier plant dates and cultivar substitution will be required. Fisheries play a crucial role in providing food security with the contribution of fish to dietary animal protein being very high in the region – up to 90 % in small island developing states (SIDS). With the warming of the Pacific and Indian Oceans and increased acidification, marine ecosystems are presently under stress. Despite these trends, maintaining or enhancing food production from the sea is critical. However, future sustainability must be maintained whilst also securing biodiversity conservation. Improved fisheries management to address the existing non-climate threats remains paramount in the Indian and Pacific Oceans with sustainable management regimes being established. Climate-related impacts are expected to increase in magnitude over the coming decades, thus preliminary adaptation to climate change is valuable.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-94...
    Part of book or chapter of book . 2013 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-94...
      Part of book or chapter of book . 2013 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wolf, Benjamin; Zheng, Xunhua; Bruggemann, Nicolas; Chen, Weiwei; +6 Authors

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010
    Nature
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    262
    citations262
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010
      Nature
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; +2 Authors

    SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Public Administration and Development
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Public Administration and Development
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Thomas Lübberstedt; Yanhai Yin; Maria G. Salas Fernandez; Philip W. Becraft;

    The increasing demand for lignocellulosic biomass for the production of biofuels provides value to vegetative plant tissue and leads to a paradigm shift for optimizing plant architecture in bioenergy crops. Plant height (PHT) is among the most important biomass yield components and is the focus of this review, with emphasis on the energy grasses maize (Zea mays) and sorghum (Sorghum bicolor). We discuss the scientific advances in the identification of PHT quantitative trait loci (QTLs) and the understanding of pathways and genes controlling PHT, especially gibberellins and brassinosteroids. We consider pleiotropic effects of QTLs or genes affecting PHT on other agronomically important traits and, finally, we discuss strategies for applying this knowledge to the improvement of dual-purpose or dedicated bioenergy crops.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trends in Plant Science
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    204
    citations204
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trends in Plant Science
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen P. Long; Frank G. Dohleman;

    Abstract In the first side-by-side large-scale trials of these two C4 crops in the U.S. Corn Belt, Miscanthus (Miscanthus × giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (ϵ i) and its conversion into aboveground biomass (ϵ ca). Averaged over two growing seasons, ϵ ca did not differ, but ϵ i was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO2 uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO2 responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO2 assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C4 photosynthetic productivity is not achieved by modern temperate maize cultivars.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1104/pp.109...
    Article . 2009 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://www.plantphysiol.org/co...
    Article
    License: CC BY
    Data sources: UnpayWall
    PLANT PHYSIOLOGY
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    321
    citations321
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1104/pp.109...
      Article . 2009 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://www.plantphysiol.org/co...
      Article
      License: CC BY
      Data sources: UnpayWall
      PLANT PHYSIOLOGY
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; +6 Authors

    AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    135
    citations135
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shengnan Hou; Xiaofeng Ji; Lin Tang; Na Zheng; +1 Authors

    A pot experiment was undertaken to investigate the effects of Cd and Cu mixtures to growth and nutrients (sugar, carotene or vitamin C) of carrot and pakchoi under greenhouse cultivation condition. The study included: (a) physical-chemical properties of soil and soil animals in response to Cd and Cu stress; (b) bioaccumulation of heavy metals, length, biomass, contents of sugar and carotene (vitamin C) of carrot and pakchoi; (c) estimation the effects of Cd and Cu mixtures by multivariate regression analysis. The results implied that heavy metals impacted negative influence on soil animals' abundance. The metals contents in plants increased obviously with Cd and Cu contamination in soil. The biomass production and nutrients declined with Cd and Cu contents increasing. Cd (20 mg kg-1) treatment caused maximum reduction of sugar content (45.29%) in carrot root; maximum reduction in carotene content (75.73%) in carrot, 75.1% sugar content reduction and 70.58% vitamin C content reduction in pakchoi shoots were observed with addition of Cd (20 mg kg-1) and Cu (400 mg kg-1) mixture. The results of multivariate regression analysis indicated that combination of Cd and Cu exerts negative effects to both carrot and pakchoi, and both growth and nutrients were negatively correlated with metals concentrations. It is concluded that the Cd and Cu mixtures caused toxic damage to vegetable plants as Cd and Cu gradient concentrations increased.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yueling Qi; Adam Ossowicki; Xiaomei Yang; Esperanza Huerta Lwanga; +3 Authors

    Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Hazardous Materials
    Article . 2020 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Hazardous Materials
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Wageningen Staff Publications
    Article . 2020
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    423
    citations423
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Hazardous Materials
      Article . 2020 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Hazardous Materials
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Wageningen Staff Publications
      Article . 2020
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.