- home
- Search
- Energy Research
- 2. Zero hunger
- 12. Responsible consumption
- GB
- FR
- Technical University of Munich
- Energy Research
- 2. Zero hunger
- 12. Responsible consumption
- GB
- FR
- Technical University of Munich
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Spain, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | BIOBIOEC| BIOBIOMarie-Louise Oschatz; Jürgen K. Friedel; András Báldi; Sebastian Wolfrum; Jean-Philippe Choisis; Maurizio G. Paoletti; Manuel K. Schneider; Wendy Jane Fjellstad; Felix Herzog; Peter Dennis; Jean-Pierre Sarthou; Jean-Pierre Sarthou; Rob H. G. Jongman; Juri Nascimbene; Max Kainz; Philippe Pointereau; Michaela Arndorfer; Mario Díaz; Gergely Jerkovich; Gisela Lüscher; Sebastian Eiter; Debra Bailey; Pippa Gillingham; Tiziano Gomiero; Ilse R. Geijzendorffer; Katalin Balázs; Zoltán Elek; Gerardo Moreno; Daniele Sommaggio; Norman Siebrecht; Thomas Frank; Anikó Kovács-Hostyánszki; Philippe Jeanneret;handle: 10261/257771
AbstractConversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03356520Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-021-00256-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 55 Powered bymore_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03356520Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-021-00256-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | Phusicos, EC | OPERANDUM, EC | RECONECTEC| Phusicos ,EC| OPERANDUM ,EC| RECONECTJames M. Strout; Amy M. P. Oen; Bjørn G. Kalsnes; Anders Solheim; Gerd Lupp; Francesco Pugliese; Séverine Bernardie;doi: 10.3390/su13020986
Impacts in the form of innovation and commercialization are essential components of publicly funded research projects. PHUSICOS ("According to nature" in Greek), an EU Horizon 2020 program (H2020) Innovation Action project, aims to demonstrate the use of nature-based solutions (NBS) to mitigate hydrometeorological hazards in rural and mountainous areas. The work program is built around key innovation actions, and each Work Package (WP) leader is specifically responsible for nurturing innovation processes, maintaining market focus, and ensuring relevance for the intended recipients of the project results. Key success criteria for PHUSICOS include up-scaling and mainstream implementation of NBS to achieve broader market access. An innovation strategy and supporting tools for implementing this within PHUSICOS has been developed and key concepts forming the basis for this strategy are presented in this research note.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lorraine Kaiser; Galina Balakirski; Hans F. Merk; Sarah Gerdsen; Murat Bas; Henning Bier; Jens M. Baron; Wolfgang Straff; Stefani Röseler; Conny Höflich; Wolfgang Dott; Adam Chaker; Ulrich Strassen; Hans-Guido Mücke; Zuzanna Hajdu; Katharina Czaja;pmid: 26906017
International journal of hygiene and environmental health 219(3), 252-260 (2016). doi:10.1016/j.ijheh.2016.01.007 Published by Elsevier, München
International Journa... arrow_drop_down International Journal of Hygiene and Environmental HealthArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hygiene and Environmental HealthArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Hygiene and Environmental HealthJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheh.2016.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hygiene and Environmental HealthArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hygiene and Environmental HealthArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Hygiene and Environmental HealthJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheh.2016.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Oxford University Press (OUP) Funded by:UKRI | Soil microbial community ..., UKRI | Un-stable microbiomes - S...UKRI| Soil microbial community dynamics and biogeochemical cycles under global change: effects of climate and vegetation change in alpine ecosystems ,UKRI| Un-stable microbiomes - Stability to drought of soil microbiomes shaped by land use and plant speciesAuthors: Broadbent, Arthur A. D.; Snell, Helen S. K.; Michas, Antonios; Pritchard, William J.; +9 AuthorsBroadbent, Arthur A. D.; Snell, Helen S. K.; Michas, Antonios; Pritchard, William J.; Newbold, Lindsay; Cordero, Irene; Goodall, Tim; Schallhart, Nikolaus; Kaufmann, Ruediger; Griffiths, Robert I.; Schloter, Michael; Bahn, Michael; Bardgett, Richard D.;Abstract Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00922-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00922-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, Norway, United KingdomPublisher:Wiley Håvard Kauserud; Beatrice Senn-Irlet; Jacob Heilmann-Clausen; Ulf Büntgen; Ulf Büntgen; Alan C. Gange; Claus Bässler; Claus Bässler; Irmgard Krisai-Greilhuber; Simon Egli; Thomas W. Kuyper; Einar Heegaard; Carrie Andrew; Carrie Andrew; Klaus Høiland; Lynne Boddy; Paul M. Kirk;AbstractHere we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large‐scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring‐fruiting ectomycorrhizal fungi. Species‐specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 67download downloads 67 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Karl-Heinz Engel; Richard M. Röhlig; Thomas Frank; Howard V. Davies; Derek Stewart; Louise V. T. Shepherd;pmid: 20627114
"Omics" technologies provide coverage of gene, protein and metabolite analysis that is unsurpassed compared with traditional targeted approaches. There are a growing number of examples indicating that profiling approaches can be used to expose significant sources of variation in the composition of crop and model plants caused by genetic background, breeding method, growing environment (site, season), genotype × environment interactions and crop cultural practices to name but a few. Whilst breeders have long been aware of such variation from tried and tested targeted analytical approaches, the broad-scale, so called "unbiased" analysis of the metabolome now possible, offers a major upside to our understanding of the true extent of variation in a plethora of metabolites relevant to human and animal health and nutrition. Metabolomics is helping to provide targets for plant breeding by linking gene expression, and allelic variation to variation in metabolite complement (functional genomics), and is also being deployed to better assess the potential impacts of climate change and reduced input agricultural systems on crop composition. This review will provide examples of the factors driving variation in the metabolomes of crop species.
Regulatory Toxicolog... arrow_drop_down Regulatory Toxicology and PharmacologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.yrtph.2010.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Regulatory Toxicolog... arrow_drop_down Regulatory Toxicology and PharmacologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.yrtph.2010.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | Soil microbial community ..., UKRI | Un-stable microbiomes - S...UKRI| Soil microbial community dynamics and biogeochemical cycles under global change: effects of climate and vegetation change in alpine ecosystems ,UKRI| Un-stable microbiomes - Stability to drought of soil microbiomes shaped by land use and plant speciesAuthors: Broadbent, Arthur A. D.; Bahn, Michael; Pritchard, William J.; Newbold, Lindsay K.; +11 AuthorsBroadbent, Arthur A. D.; Bahn, Michael; Pritchard, William J.; Newbold, Lindsay K.; Goodall, Tim; Guinta, Andrew; Snell, Helen S. K.; Cordero, Irene; Michas, Antonios; Grant, Helen K.; Soto, David X.; Kaufmann, Rüdiger; Schloter, Michael; Griffiths, Robert I.; Bardgett, Richard D.;AbstractClimate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross‐seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 30 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 22 Oct 2015 United States, United States, Switzerland, United Kingdom, Netherlands, United States, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivMelinda D. Smith; Eric W. Seabloom; Helge Bruelheide; Jasper van Ruijven; Catherine L. Bonin; Andy Hector; Madhav P. Thakur; Alexandra Weigelt; Shahid Naeem; Nico Eisenhauer; Dylan Craven; Vojtěch Lanta; John N. Griffin; Carl Beierkuhnlein; Wim H. van der Putten; Wolfgang W. Weisser; Akira Mori; Peter B. Reich; Peter B. Reich; Qinfeng Guo; Benjamin F. Tracy; Pascal A. Niklaus; Christiane Roscher; Enrica De Luca; Forest Isbell; Jürgen Kreyling; Peter Manning; John Connolly; David Tilman; David Tilman; Yann Hautier; H. Wayne Polley; Anne Ebeling; Bernhard Schmid; M. Loreau; T. Martin Bezemer; Sebastian T. Meyer; Brian J. Wilsey; Anke Jentsch;It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Nature arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature15374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,154 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature15374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Marialena Nikolopoulou; Nan Zhang; Li Tang; Fu-Yun Zhao; Fu-Yun Zhao;Abstract Historic settlements are a type of architecture adapted to local climate and geographical environment. For hundreds of years, people have been living in them. Rich and precious scientific design concepts of these organic settlements, including the site selection, the layout, and the building materials, should be investigated extensively. To explore these concepts, different historic settlements will be presented and discussed, in terms of different design elements and urban planning forms, and through the use of computational fluid dynamics (CFD). This paper presents the strategic ideas and methodology of the study. As an illustrative case study, the ambient wind environment within the Shang-gan-tang village in China has been investigated quantitatively adopting CFD (computational fluid dynamics) techniques. The interactions between settlement selection, layout, landscape and ambient environment were evaluated. The sustainable urban planning experiences were then summarized for guiding the creation of sustainable modern human settlement suitable for people living for hundreds of years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Spain, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | BIOBIOEC| BIOBIOMarie-Louise Oschatz; Jürgen K. Friedel; András Báldi; Sebastian Wolfrum; Jean-Philippe Choisis; Maurizio G. Paoletti; Manuel K. Schneider; Wendy Jane Fjellstad; Felix Herzog; Peter Dennis; Jean-Pierre Sarthou; Jean-Pierre Sarthou; Rob H. G. Jongman; Juri Nascimbene; Max Kainz; Philippe Pointereau; Michaela Arndorfer; Mario Díaz; Gergely Jerkovich; Gisela Lüscher; Sebastian Eiter; Debra Bailey; Pippa Gillingham; Tiziano Gomiero; Ilse R. Geijzendorffer; Katalin Balázs; Zoltán Elek; Gerardo Moreno; Daniele Sommaggio; Norman Siebrecht; Thomas Frank; Anikó Kovács-Hostyánszki; Philippe Jeanneret;handle: 10261/257771
AbstractConversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03356520Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-021-00256-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 55 Powered bymore_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03356520Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-021-00256-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | Phusicos, EC | OPERANDUM, EC | RECONECTEC| Phusicos ,EC| OPERANDUM ,EC| RECONECTJames M. Strout; Amy M. P. Oen; Bjørn G. Kalsnes; Anders Solheim; Gerd Lupp; Francesco Pugliese; Séverine Bernardie;doi: 10.3390/su13020986
Impacts in the form of innovation and commercialization are essential components of publicly funded research projects. PHUSICOS ("According to nature" in Greek), an EU Horizon 2020 program (H2020) Innovation Action project, aims to demonstrate the use of nature-based solutions (NBS) to mitigate hydrometeorological hazards in rural and mountainous areas. The work program is built around key innovation actions, and each Work Package (WP) leader is specifically responsible for nurturing innovation processes, maintaining market focus, and ensuring relevance for the intended recipients of the project results. Key success criteria for PHUSICOS include up-scaling and mainstream implementation of NBS to achieve broader market access. An innovation strategy and supporting tools for implementing this within PHUSICOS has been developed and key concepts forming the basis for this strategy are presented in this research note.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lorraine Kaiser; Galina Balakirski; Hans F. Merk; Sarah Gerdsen; Murat Bas; Henning Bier; Jens M. Baron; Wolfgang Straff; Stefani Röseler; Conny Höflich; Wolfgang Dott; Adam Chaker; Ulrich Strassen; Hans-Guido Mücke; Zuzanna Hajdu; Katharina Czaja;pmid: 26906017
International journal of hygiene and environmental health 219(3), 252-260 (2016). doi:10.1016/j.ijheh.2016.01.007 Published by Elsevier, München
International Journa... arrow_drop_down International Journal of Hygiene and Environmental HealthArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hygiene and Environmental HealthArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Hygiene and Environmental HealthJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheh.2016.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hygiene and Environmental HealthArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hygiene and Environmental HealthArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Hygiene and Environmental HealthJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheh.2016.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Oxford University Press (OUP) Funded by:UKRI | Soil microbial community ..., UKRI | Un-stable microbiomes - S...UKRI| Soil microbial community dynamics and biogeochemical cycles under global change: effects of climate and vegetation change in alpine ecosystems ,UKRI| Un-stable microbiomes - Stability to drought of soil microbiomes shaped by land use and plant speciesAuthors: Broadbent, Arthur A. D.; Snell, Helen S. K.; Michas, Antonios; Pritchard, William J.; +9 AuthorsBroadbent, Arthur A. D.; Snell, Helen S. K.; Michas, Antonios; Pritchard, William J.; Newbold, Lindsay; Cordero, Irene; Goodall, Tim; Schallhart, Nikolaus; Kaufmann, Ruediger; Griffiths, Robert I.; Schloter, Michael; Bahn, Michael; Bardgett, Richard D.;Abstract Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00922-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00922-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, Norway, United KingdomPublisher:Wiley Håvard Kauserud; Beatrice Senn-Irlet; Jacob Heilmann-Clausen; Ulf Büntgen; Ulf Büntgen; Alan C. Gange; Claus Bässler; Claus Bässler; Irmgard Krisai-Greilhuber; Simon Egli; Thomas W. Kuyper; Einar Heegaard; Carrie Andrew; Carrie Andrew; Klaus Høiland; Lynne Boddy; Paul M. Kirk;AbstractHere we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large‐scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring‐fruiting ectomycorrhizal fungi. Species‐specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 67download downloads 67 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Karl-Heinz Engel; Richard M. Röhlig; Thomas Frank; Howard V. Davies; Derek Stewart; Louise V. T. Shepherd;pmid: 20627114
"Omics" technologies provide coverage of gene, protein and metabolite analysis that is unsurpassed compared with traditional targeted approaches. There are a growing number of examples indicating that profiling approaches can be used to expose significant sources of variation in the composition of crop and model plants caused by genetic background, breeding method, growing environment (site, season), genotype × environment interactions and crop cultural practices to name but a few. Whilst breeders have long been aware of such variation from tried and tested targeted analytical approaches, the broad-scale, so called "unbiased" analysis of the metabolome now possible, offers a major upside to our understanding of the true extent of variation in a plethora of metabolites relevant to human and animal health and nutrition. Metabolomics is helping to provide targets for plant breeding by linking gene expression, and allelic variation to variation in metabolite complement (functional genomics), and is also being deployed to better assess the potential impacts of climate change and reduced input agricultural systems on crop composition. This review will provide examples of the factors driving variation in the metabolomes of crop species.
Regulatory Toxicolog... arrow_drop_down Regulatory Toxicology and PharmacologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.yrtph.2010.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Regulatory Toxicolog... arrow_drop_down Regulatory Toxicology and PharmacologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.yrtph.2010.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | Soil microbial community ..., UKRI | Un-stable microbiomes - S...UKRI| Soil microbial community dynamics and biogeochemical cycles under global change: effects of climate and vegetation change in alpine ecosystems ,UKRI| Un-stable microbiomes - Stability to drought of soil microbiomes shaped by land use and plant speciesAuthors: Broadbent, Arthur A. D.; Bahn, Michael; Pritchard, William J.; Newbold, Lindsay K.; +11 AuthorsBroadbent, Arthur A. D.; Bahn, Michael; Pritchard, William J.; Newbold, Lindsay K.; Goodall, Tim; Guinta, Andrew; Snell, Helen S. K.; Cordero, Irene; Michas, Antonios; Grant, Helen K.; Soto, David X.; Kaufmann, Rüdiger; Schloter, Michael; Griffiths, Robert I.; Bardgett, Richard D.;AbstractClimate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross‐seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 30 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 22 Oct 2015 United States, United States, Switzerland, United Kingdom, Netherlands, United States, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivMelinda D. Smith; Eric W. Seabloom; Helge Bruelheide; Jasper van Ruijven; Catherine L. Bonin; Andy Hector; Madhav P. Thakur; Alexandra Weigelt; Shahid Naeem; Nico Eisenhauer; Dylan Craven; Vojtěch Lanta; John N. Griffin; Carl Beierkuhnlein; Wim H. van der Putten; Wolfgang W. Weisser; Akira Mori; Peter B. Reich; Peter B. Reich; Qinfeng Guo; Benjamin F. Tracy; Pascal A. Niklaus; Christiane Roscher; Enrica De Luca; Forest Isbell; Jürgen Kreyling; Peter Manning; John Connolly; David Tilman; David Tilman; Yann Hautier; H. Wayne Polley; Anne Ebeling; Bernhard Schmid; M. Loreau; T. Martin Bezemer; Sebastian T. Meyer; Brian J. Wilsey; Anke Jentsch;It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Nature arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature15374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,154 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature15374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Marialena Nikolopoulou; Nan Zhang; Li Tang; Fu-Yun Zhao; Fu-Yun Zhao;Abstract Historic settlements are a type of architecture adapted to local climate and geographical environment. For hundreds of years, people have been living in them. Rich and precious scientific design concepts of these organic settlements, including the site selection, the layout, and the building materials, should be investigated extensively. To explore these concepts, different historic settlements will be presented and discussed, in terms of different design elements and urban planning forms, and through the use of computational fluid dynamics (CFD). This paper presents the strategic ideas and methodology of the study. As an illustrative case study, the ambient wind environment within the Shang-gan-tang village in China has been investigated quantitatively adopting CFD (computational fluid dynamics) techniques. The interactions between settlement selection, layout, landscape and ambient environment were evaluated. The sustainable urban planning experiences were then summarized for guiding the creation of sustainable modern human settlement suitable for people living for hundreds of years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu