- home
- Search
- Energy Research
- 7. Clean energy
- AU
- GB
- IT
- UNSW Sydney
- Energy Research
- 7. Clean energy
- AU
- GB
- IT
- UNSW Sydney
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bomiao Liang; Jiajia Yang; Beiping Hou; Zhiyuan He;The utilization of demand response flexibility has become a significant method to cope with the intermittence of renewable energy sources in distributed systems. This paper proposed a new pricing method for demand response resources managed by a distribution system aggregator, which is deduced from analyzing the operating revenue within the timescale from hours to years. In the proposed model, the hourly decision-making of an aggregator is formulated as a newsvendor model and uncertainties in the long-term decisions are modelled by a backward valuation process. It maximizes the benefit of an aggregator by considering the price and quantity uncertainties of distributed load/generation in day-ahead and real-time wholesale electricity markets. Meanwhile, the coexistence of controllable and uncontrollable loads is also considered, where the former refers to electricity consumption from end-users who are equipped with smart devices for energy management, and the latter load demand of passive end-users who have no willingness or capability to participate in the demand response schemes. Finally, numerical studies are carried out to demonstrate the feasibility and effectiveness of the developed model and methods, and the impacts of active end-user percentage on the aggregator operation under the proposed pricing method are also compared and illustrated.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: http://doi.org/10.1109/TPWRS.2020.3032593Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3032593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: http://doi.org/10.1109/TPWRS.2020.3032593Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3032593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Tapabrata Ray; Saber M. Elsayed; Saber M. Elsayed; Ruhul A. Sarker; Forhad Zaman;Abstract To achieve optimal generation from a number of mixed power plants by minimizing the operational cost while meeting the electricity demand is a challenging optimization problem. When the system involves uncertain renewable energy, the problem has become harder with its operated generators may suffer a technical problem of ramp-rate violations during the periodic implementation in subsequent days. In this paper, a scenario-based dynamic economic dispatch model is proposed for periodically implementing its resources on successive days with uncertain wind speed and load demand. A set of scenarios is generated based on realistic data to characterize the random nature of load demand and wind forecast errors. In order to solve the uncertain dispatch problems, a self-adaptive differential evolution and real-coded genetic algorithm with a new heuristic are proposed. The heuristic is used to enhance the convergence rate by ensuring feasible load allocations for a given hour under the uncertain behavior of wind speed and load demand. The proposed frameworks are successfully applied to two deterministic and uncertain DED benchmarks, and their simulation results are compared with each other and state-of-the-art algorithms which reveal that the proposed method has merit in terms of solution quality and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Chengguo Zhang; Faham Tahmasebinia; Ismet Canbulat; Onur Vardar; Serkan Saydam;doi: 10.3390/en11020285
In underground mining, it is not currently feasible to forecast a coal burst incident. A coal burst usually includes suddenly abrupt energy release in line with the significant deformed shape in a coal mass as well as coal ejection. The major source of the released energy is the energy stored in the coal. The effect of geological characteristics in the coal on the possible released energy due to material and joint damping is classified as a current silent issue. Therefore, innovative research is needed to understand the influence of coal’s joint and cleat characters (directions and densities) on the possible energy release and/or dissipation. A simple and novel analytical solution is developed in this paper to calculate the amount of released energy due to varying joint density. A broad validation is conducted by comparing the outcomes of the developed analytical model with the results of a three-dimensional numerical simulation using the commercial discrete element package 3DEC. An appropriate agreement has been observed between the results from the numerical modelling and the suggested closed form solution. The paper derives a novel analytical solution to calculate the amount of released energy in coal with different joint densities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Qilin Ye; Ned J. Western; Udo Romer; Stephen P. Bremner;The point contacting by localized dielectric breakdown (PLDB) method utilizes a dielectric breakdown above a locally doped region to form ohmic contacts for a solar cell rear surface. This article describes the design and fabrication of the PLDB solar cells and the contact properties characterization. A complete solar cell fabrication process applying PLDB as a rear contact design was developed, with the demonstration of an 18.0% proof-of-concept PERC structure PLDB solar cell. Two major loss mechanisms in the fabricated solar cell were characterized to be a high series resistance and nonideal recombination. By modulating the local boron doping profile with acidic etching, the impact of the surface doping concentration on local contact recombination and contact resistivity was investigated, resulting in an estimated contact resistivity of approximately 5 mΩ·cm2 and contact recombination of approximately 600 fA/cm2. With these metrics, modeling suggests that by optimizing the contact pitch of our solar cells, efficiencies of up to 24% are well achievable for this low-temperature contacting method.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2953394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2953394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Bing Xie; Qi Wang; Qi Zhang; Zhiyong Liu; Jinshan Lu; Haibo Zhang; Shenglin Jiang;pmid: 34081431
To overcome the inherent high hysteresis loss of ferroelectric polymer-based nanocomposites, non-ferroelectric linear dielectric poly(methyl methacrylate) (PMMA) is adopted as the polymer matrix for high discharge efficiency. At the same time, slender ferroelectric BaTiO3 nanowires (BT NWs) with a high dielectric constant are selected as the nanofiller for high energy density. To avoid the agglomeration of BT NWs and enhance the strength of interfaces, dopamine is used as organic coatings to tailor the interface. The BT@dopa NWs/PMMA nanocomposites exhibit excellent interface compatibility between the BT NWs and PMMA matrix and a very good microstructure uniformity. Based on this, hierarchically structured BT@SiO2@dopa NWs are designed and prepared to overcome the uneven electric field distribution at the interface, resulting from the dielectric constant mismatch. The discharged energy density (Ue) can be largely enhanced from 3.76 J/cm3 for pure PMMA films to 11.78 J/cm3 for PMMA-based nanocomposites by incorporating 5.0 wt % BT@SiO2@dopa NWs. In addition, a high discharging efficiency (η) of 91% is obtained simultaneously in the nanocomposites. Both experimental and theoretical simulations demonstrate that the double core-shell structure nanowire fillers can effectively alleviate the local field distortion, inhibit leakage current, and suppress remnant electric displacement, leading to the high Ue and η. These findings are significant in facilitating the development of high-performance film dielectric capacitor materials using PMMA-based nanocomposites toward high energy storage density.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c03835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c03835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Mahmud, Khizir;handle: 1959.4/61242
The aggregated peaks in power demand necessitate substantial overcapacity in the size of power generators, transformers, transmission lines, and protection circuitries. It results in poor utilisation of the electric infrastructure for a substantial proportion of the time of a day. Moreover, power generators that can respond rapidly to the rapid changes in demand associated with the peak are more expensive than baseload generators. With the advancement of smart grids, more small-capacity distributed renewable energy generators are added which are intermittent and non-dispatchable. Therefore, a robust power-demand management system (PDMS) is essential to coordinate, these intermittent sources and loads to maximise the system's utilisation and reliability. Basically, PDMS is an important process that allows energy providers to reshape load profiles, increase energy efficiency, and reduce overall operational costs. In this thesis, an advanced PDMS is developed to manage various distributed energy resources such as electric vehicles (EVs), photovoltaics (PVs), electric boats (EBs), and battery storage. The types, capacity, characteristics, and dynamics of these resources are considered in the analysis. The management technique is tested in real Australian power distribution networks under real load and weather conditions. The various scales of the network are considered, e.g. small-scale, large-scale, grid-connected, and islanded. The energy resources in a small-scale system are utilised to meet the domestic power demand. Likewise, aggregated PVs and aggregated PVs in a parking lot are used to manage the large-scale commercial load demand. Any excess energy after meeting the domestic power demand is shared with neighbours through a bidirectional energy-transaction process. In the demand management process, various ancillary supports such as voltage and frequency regulation are provided. The placement of the controller and the impact of the uncoordinated energy-management systems along with their feasible solutions are also investigated. Additionally, the economic benefit of the power-demand management to the prosumers are calculated. The proposed techniques are compared with an artificial neural-network-based technique and validated in a laboratory experiment. The study shows that, using the proposed method, the peak demand on the distribution grid can be reduced significantly, thereby substantially improving the load factor.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/61242Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/3601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/61242Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/3601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bomiao Liang; Jiajia Yang; Beiping Hou; Zhiyuan He;The utilization of demand response flexibility has become a significant method to cope with the intermittence of renewable energy sources in distributed systems. This paper proposed a new pricing method for demand response resources managed by a distribution system aggregator, which is deduced from analyzing the operating revenue within the timescale from hours to years. In the proposed model, the hourly decision-making of an aggregator is formulated as a newsvendor model and uncertainties in the long-term decisions are modelled by a backward valuation process. It maximizes the benefit of an aggregator by considering the price and quantity uncertainties of distributed load/generation in day-ahead and real-time wholesale electricity markets. Meanwhile, the coexistence of controllable and uncontrollable loads is also considered, where the former refers to electricity consumption from end-users who are equipped with smart devices for energy management, and the latter load demand of passive end-users who have no willingness or capability to participate in the demand response schemes. Finally, numerical studies are carried out to demonstrate the feasibility and effectiveness of the developed model and methods, and the impacts of active end-user percentage on the aggregator operation under the proposed pricing method are also compared and illustrated.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: http://doi.org/10.1109/TPWRS.2020.3032593Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3032593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: http://doi.org/10.1109/TPWRS.2020.3032593Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3032593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Tapabrata Ray; Saber M. Elsayed; Saber M. Elsayed; Ruhul A. Sarker; Forhad Zaman;Abstract To achieve optimal generation from a number of mixed power plants by minimizing the operational cost while meeting the electricity demand is a challenging optimization problem. When the system involves uncertain renewable energy, the problem has become harder with its operated generators may suffer a technical problem of ramp-rate violations during the periodic implementation in subsequent days. In this paper, a scenario-based dynamic economic dispatch model is proposed for periodically implementing its resources on successive days with uncertain wind speed and load demand. A set of scenarios is generated based on realistic data to characterize the random nature of load demand and wind forecast errors. In order to solve the uncertain dispatch problems, a self-adaptive differential evolution and real-coded genetic algorithm with a new heuristic are proposed. The heuristic is used to enhance the convergence rate by ensuring feasible load allocations for a given hour under the uncertain behavior of wind speed and load demand. The proposed frameworks are successfully applied to two deterministic and uncertain DED benchmarks, and their simulation results are compared with each other and state-of-the-art algorithms which reveal that the proposed method has merit in terms of solution quality and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Chengguo Zhang; Faham Tahmasebinia; Ismet Canbulat; Onur Vardar; Serkan Saydam;doi: 10.3390/en11020285
In underground mining, it is not currently feasible to forecast a coal burst incident. A coal burst usually includes suddenly abrupt energy release in line with the significant deformed shape in a coal mass as well as coal ejection. The major source of the released energy is the energy stored in the coal. The effect of geological characteristics in the coal on the possible released energy due to material and joint damping is classified as a current silent issue. Therefore, innovative research is needed to understand the influence of coal’s joint and cleat characters (directions and densities) on the possible energy release and/or dissipation. A simple and novel analytical solution is developed in this paper to calculate the amount of released energy due to varying joint density. A broad validation is conducted by comparing the outcomes of the developed analytical model with the results of a three-dimensional numerical simulation using the commercial discrete element package 3DEC. An appropriate agreement has been observed between the results from the numerical modelling and the suggested closed form solution. The paper derives a novel analytical solution to calculate the amount of released energy in coal with different joint densities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Qilin Ye; Ned J. Western; Udo Romer; Stephen P. Bremner;The point contacting by localized dielectric breakdown (PLDB) method utilizes a dielectric breakdown above a locally doped region to form ohmic contacts for a solar cell rear surface. This article describes the design and fabrication of the PLDB solar cells and the contact properties characterization. A complete solar cell fabrication process applying PLDB as a rear contact design was developed, with the demonstration of an 18.0% proof-of-concept PERC structure PLDB solar cell. Two major loss mechanisms in the fabricated solar cell were characterized to be a high series resistance and nonideal recombination. By modulating the local boron doping profile with acidic etching, the impact of the surface doping concentration on local contact recombination and contact resistivity was investigated, resulting in an estimated contact resistivity of approximately 5 mΩ·cm2 and contact recombination of approximately 600 fA/cm2. With these metrics, modeling suggests that by optimizing the contact pitch of our solar cells, efficiencies of up to 24% are well achievable for this low-temperature contacting method.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2953394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2953394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Bing Xie; Qi Wang; Qi Zhang; Zhiyong Liu; Jinshan Lu; Haibo Zhang; Shenglin Jiang;pmid: 34081431
To overcome the inherent high hysteresis loss of ferroelectric polymer-based nanocomposites, non-ferroelectric linear dielectric poly(methyl methacrylate) (PMMA) is adopted as the polymer matrix for high discharge efficiency. At the same time, slender ferroelectric BaTiO3 nanowires (BT NWs) with a high dielectric constant are selected as the nanofiller for high energy density. To avoid the agglomeration of BT NWs and enhance the strength of interfaces, dopamine is used as organic coatings to tailor the interface. The BT@dopa NWs/PMMA nanocomposites exhibit excellent interface compatibility between the BT NWs and PMMA matrix and a very good microstructure uniformity. Based on this, hierarchically structured BT@SiO2@dopa NWs are designed and prepared to overcome the uneven electric field distribution at the interface, resulting from the dielectric constant mismatch. The discharged energy density (Ue) can be largely enhanced from 3.76 J/cm3 for pure PMMA films to 11.78 J/cm3 for PMMA-based nanocomposites by incorporating 5.0 wt % BT@SiO2@dopa NWs. In addition, a high discharging efficiency (η) of 91% is obtained simultaneously in the nanocomposites. Both experimental and theoretical simulations demonstrate that the double core-shell structure nanowire fillers can effectively alleviate the local field distortion, inhibit leakage current, and suppress remnant electric displacement, leading to the high Ue and η. These findings are significant in facilitating the development of high-performance film dielectric capacitor materials using PMMA-based nanocomposites toward high energy storage density.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c03835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c03835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Mahmud, Khizir;handle: 1959.4/61242
The aggregated peaks in power demand necessitate substantial overcapacity in the size of power generators, transformers, transmission lines, and protection circuitries. It results in poor utilisation of the electric infrastructure for a substantial proportion of the time of a day. Moreover, power generators that can respond rapidly to the rapid changes in demand associated with the peak are more expensive than baseload generators. With the advancement of smart grids, more small-capacity distributed renewable energy generators are added which are intermittent and non-dispatchable. Therefore, a robust power-demand management system (PDMS) is essential to coordinate, these intermittent sources and loads to maximise the system's utilisation and reliability. Basically, PDMS is an important process that allows energy providers to reshape load profiles, increase energy efficiency, and reduce overall operational costs. In this thesis, an advanced PDMS is developed to manage various distributed energy resources such as electric vehicles (EVs), photovoltaics (PVs), electric boats (EBs), and battery storage. The types, capacity, characteristics, and dynamics of these resources are considered in the analysis. The management technique is tested in real Australian power distribution networks under real load and weather conditions. The various scales of the network are considered, e.g. small-scale, large-scale, grid-connected, and islanded. The energy resources in a small-scale system are utilised to meet the domestic power demand. Likewise, aggregated PVs and aggregated PVs in a parking lot are used to manage the large-scale commercial load demand. Any excess energy after meeting the domestic power demand is shared with neighbours through a bidirectional energy-transaction process. In the demand management process, various ancillary supports such as voltage and frequency regulation are provided. The placement of the controller and the impact of the uncoordinated energy-management systems along with their feasible solutions are also investigated. Additionally, the economic benefit of the power-demand management to the prosumers are calculated. The proposed techniques are compared with an artificial neural-network-based technique and validated in a laboratory experiment. The study shows that, using the proposed method, the peak demand on the distribution grid can be reduced significantly, thereby substantially improving the load factor.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/61242Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/3601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/61242Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/3601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu