- home
- Search
- Energy Research
- 12. Responsible consumption
- 14. Life underwater
- GB
- Energy Research
- 12. Responsible consumption
- 14. Life underwater
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kunio Yoshikawa; Norfadhilah Hamzah; Mohammad Zandi; Koji Tokimatsu;Abstract This paper characterized the wood pellet and torrefied wood pellet fuel as compared to coal for 100 MW co-firing power generation plant. There were five experiments to characterise the chemical and physical properties of coal, wood pellet and torrefied wood pellet namely moisture analysis, Thermo gravimetric Analyser (TGA), Bomb Calorimeter, Organic Elemental Analyser and Scanning Electron Microscope (SEM). The moisture analysis result from moisture analyser and TGA shows that the moisture content of torrefied wood pellet is lower than wood pellet at 6.760% and 3.629%. Moreover, the volatile matter, hydrogen and nitrogen content of torrefied wood pellet is lower than wood pellet at 65.20%, 5.993% and 0.4078% correspondingly. The calorific value, fixed carbon content, ash and sulphur also increase in torrefied wood pellet at 20.68 MJ/kg, 28.85%, 2.321% and 0.1656% respectively. In general, torrefaction improve the fuel properties of wood pellet similar to coal. The 100 MW direct co-firing power plant provides less capital investment, operation and maintenance cost for low rate co-firing ratio. However, there is economic challenges for high rate co-firing substation of torrefied wood pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:American Society of Civil Engineers (ASCE) Feng Yu; Sufen Dong; Linwei Li; Ashraf Ashour; Siqi Ding; Baoguo Han; Jinping Ou;handle: 10454/19363
Yes ; Utilizing seawater and sea-sand for producing ultra-high performance concrete (UHPC) can substantially reduce raw materials costs and alleviate the current freshwater and river sand resources shortage in coastal and marine areas. However, the corrosion risk to reinforcing fibers inside UHPC caused by chlorides in seawater and sea-sand cannot be ignored. In this study, a new type of sustainable UHPC composed of seawater and desalinated sea-sand (UHPSSC) reinforced with stainless profile, super-fine stainless wire (SSW) was developed. Its mechanical properties and chloride content were studied. The research results show that SSWs do not rust after immersion in seawater. The flexural and compressive strengths of UHPSSC incorporating 1.5% SSWs are 13.8MPa and 138.6MPa, respectively, and the flexural toughness of UHPSSC is increased by 428.9%, reaching the basic mechanical requirements of UHPC. The high specific surface area of SSW and enrichment of silica fume on its surface enhance the interfacial bond between fiber and matrix, further promoting the full play of the SSWs’ reinforcing mechanisms as proved by the decrease of the Ca/Si ratio at the SSW surface. The C-S-H gels with a high Ca/Si ratio within the ITZ as well as Friedel’s salt are conducive to immobilize chlorides, blocking the migration of chlorides through the matrix and further mitigating the risk of long-term chloride corrosion of SSWs. Overall, utilizing seawater and desalinated sea-sand in combination with SSWs can produce UHPC with improved strength and toughness, making it a suitable choice for applications where high durability and long-term mechanical performance is required.
Journal of Materials... arrow_drop_down Bradford Scholars@University of BradfordArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/jmcee7.mteng-16072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 56visibility views 56 download downloads 66 Powered bymore_vert Journal of Materials... arrow_drop_down Bradford Scholars@University of BradfordArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/jmcee7.mteng-16072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Alan Henry; Matt Folley; Trevor Whittaker;Abstract This paper investigates the hydrodynamics of a seabed-mounted, bottom-hinged, flap-type wave energy converter in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the wave force on the flap is the key determinant of power capture. The results from a physical modelling program have been used in conjunction with numerical data from WAMIT to validate the conceptual model. The work finds that designing the device to increase the wave force is more profitable than designing it to be tuned to the incident wave climate. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and pierce the water surface to reduce decoupling due to wave overtopping. It is concluded that, in order to maximize capture factor at a typical North Atlantic site, the flap should be approximately 20–30 m wide, with large diameter rounded side edges, having its pivot close to the seabed and its top edge piercing the water surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 01 Jan 2021 United KingdomPublisher:University of St Andrews Authors: Gillespie, Douglas Michael; Palmer, Laura Eve; MacAulay, Jamie Donald John; Sparling, Carol Elizabeth; +1 AuthorsGillespie, Douglas Michael; Palmer, Laura Eve; MacAulay, Jamie Donald John; Sparling, Carol Elizabeth; Hastie, Gordon Drummond;3D localizations of harbour porpoise clicks within 100m of a tidal stream turbine in the Pentland Firth (58°39'N 3°08'W) off the north coast of Scotland collected between October 2017 and April 2019
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17630/c3daebc2-0dfb-4702-941a-3a4e038951de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17630/c3daebc2-0dfb-4702-941a-3a4e038951de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2010 FrancePublisher:Informa UK Limited Sharma, Bharat R.; Amarasinghe, Upali A.; Shah, Tushaar; Bharati, Luna; Ambili, G.K.; Qureshi, Asad Sarwar; Singh, R.; Smakhtin, Vladimir U.; Xueliang Cai; Condappa, D. de; Mukherji, Aditi; Pant, Dhruba; Xenarios, Stefanos;handle: 10568/37269 , 10568/34693
The basins of the Indus and Ganges rivers cover 2.20 million km2 and are inhabited by more than a billion people. The region is under extreme pressures of population and poverty, unregulated utilization of the resources and low levels of productivity. The needs are: (1) development policies that are regionally differentiated to ensure resource sustainability and high productivity; (2) immediate development and implementation of policies for sound groundwater management and energy use; (3) improvement of the fragile food security and to broaden its base; and (4) policy changes to address land fragmentation and improved infrastructure. Meeting these needs will help to improve productivity, reduce rural poverty and improve overall human development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02508060.2010.512996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02508060.2010.512996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinUsman Ali; Mohammad Haris Shamsi; Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;handle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2021Embargo end date: 15 Mar 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Benxuan Li;doi: 10.17863/cam.65895
Currently, fossil fuels make up a significant proportion of global energy demand and cause many concerns, such as increasing greenhouse gas emission. Therefore, there is a considerable need for cost-effective, facile and efficient processing of environmental-friendly energy harvesting and storage systems. Solar energy is one of the most promising energy sources that meet the energy demand. The silicon-based solar cells exhibit competitive power conversion efficiency and dominate the solar cell market in recent years. In contrast, organic solar cells (OSCs) have emerged as promising third-generation photovoltaic devices owing to their outstanding properties such as the potential of low-cost mass manufacturing, lightweight, mechanical flexibility and easy processability. Therefore, OSCs have received growing attention from the research community. For solar cell technologies, a smectic liquid crystal C8-BTBT was selected in Chapter 3 due to its unique thermal dynamic and crystal properties. A range of ternary OSCs with and without C8-BTBT loading at gradient weight fractions were thermally treated and fabricated. In addition, the assessment of fabricated OSCs on the photovoltaic characteristics reveals the evolution of various cell parameters with annealing temperature and C8-BTBT weight fractions. The cell with 5 wt% C8-BTBT loading exhibited the best performance after thermal annealing treatment at 120 oC. Furthermore, flexible hydrogel substrates were fabricated for flexible OSCs in Chapter 4. The PHEMA hydrogel films were optimised via adjusting photopolymerisation duration under UV light. Based on the fabricated PHEMA substrates, flexible OSCs were subsequently made, whose extracted device parameters showed comparable characteristics with those in Chapter 3. Moreover, PHEMA-based OSCs can be dissolved in different types of polar solvents, which is promising for realising sustainable and recyclable solar cells. For the development of energy storage devices, asymmetric carbon nanohorns were proposed as an active material to fabricate flexible solid‐state carbon wire (CW)‐based electrochemical supercapacitors (ss‐CWECs) which exhibited high power density and ultra‐low cutoff frequency. Based on microscopy and electrochemical characterisation, the fundamental reaction mechanism in polyvinyl‐based electrolyte system was elucidated in Chapter 5, as being associated with deprotonation reaction under the acid, base, and elevated temperature conditions. In Chapter 6, by using activated carbon, multi‐walled carbon nanotubes, and single‐wall carbon nanohorns as hybrid electrode materials (5:1:1), remarkable specific length capacitance of 48.76 mF cm−1 and charge-discharge stability (over 2000 times cycles) of ss‐CWECs were demonstrated, which are the highest reported to date. Furthermore, a high‐pass filter for eliminating ultra‐low electronic noise was demonstrated, enabling an optical Morse Code communication system to be operated. vThe collective works in this thesis demonstrate novel energy conversion and storage applications with the liquid crystal in OSCs and carbon nanoparticles in supercapacitors. These results provide a step forwards in the development of energy conversion and storage devices for a more efficient energy system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.65895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.65895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Philipp Schepelmann; Michael Ritthoff; Adisa Azapagic; Harish Kumar Jeswani;Life Cycle Assessment (LCA) has matured over the past decades and become part of the broader field of sustainability assessment. To strengthen LCA as a tool and eventually increase its usefulness for sustainability decision-making, it is argued that there is a need to expand the ISO LCA framework by integration and connection with other concepts and methods. This paper explores the potential options for deepening and broadening the LCA methodologies beyond the current ISO framework for improved sustainability analysis. By investigating several environmental, economic and social assessment methods, the paper suggests some options for incorporating (parts of) other methods or combining with other methods for broadening and deepening the LCA.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2009.09.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 258 citations 258 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
download 12download downloads 12 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2009.09.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kunio Yoshikawa; Norfadhilah Hamzah; Mohammad Zandi; Koji Tokimatsu;Abstract This paper characterized the wood pellet and torrefied wood pellet fuel as compared to coal for 100 MW co-firing power generation plant. There were five experiments to characterise the chemical and physical properties of coal, wood pellet and torrefied wood pellet namely moisture analysis, Thermo gravimetric Analyser (TGA), Bomb Calorimeter, Organic Elemental Analyser and Scanning Electron Microscope (SEM). The moisture analysis result from moisture analyser and TGA shows that the moisture content of torrefied wood pellet is lower than wood pellet at 6.760% and 3.629%. Moreover, the volatile matter, hydrogen and nitrogen content of torrefied wood pellet is lower than wood pellet at 65.20%, 5.993% and 0.4078% correspondingly. The calorific value, fixed carbon content, ash and sulphur also increase in torrefied wood pellet at 20.68 MJ/kg, 28.85%, 2.321% and 0.1656% respectively. In general, torrefaction improve the fuel properties of wood pellet similar to coal. The 100 MW direct co-firing power plant provides less capital investment, operation and maintenance cost for low rate co-firing ratio. However, there is economic challenges for high rate co-firing substation of torrefied wood pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:American Society of Civil Engineers (ASCE) Feng Yu; Sufen Dong; Linwei Li; Ashraf Ashour; Siqi Ding; Baoguo Han; Jinping Ou;handle: 10454/19363
Yes ; Utilizing seawater and sea-sand for producing ultra-high performance concrete (UHPC) can substantially reduce raw materials costs and alleviate the current freshwater and river sand resources shortage in coastal and marine areas. However, the corrosion risk to reinforcing fibers inside UHPC caused by chlorides in seawater and sea-sand cannot be ignored. In this study, a new type of sustainable UHPC composed of seawater and desalinated sea-sand (UHPSSC) reinforced with stainless profile, super-fine stainless wire (SSW) was developed. Its mechanical properties and chloride content were studied. The research results show that SSWs do not rust after immersion in seawater. The flexural and compressive strengths of UHPSSC incorporating 1.5% SSWs are 13.8MPa and 138.6MPa, respectively, and the flexural toughness of UHPSSC is increased by 428.9%, reaching the basic mechanical requirements of UHPC. The high specific surface area of SSW and enrichment of silica fume on its surface enhance the interfacial bond between fiber and matrix, further promoting the full play of the SSWs’ reinforcing mechanisms as proved by the decrease of the Ca/Si ratio at the SSW surface. The C-S-H gels with a high Ca/Si ratio within the ITZ as well as Friedel’s salt are conducive to immobilize chlorides, blocking the migration of chlorides through the matrix and further mitigating the risk of long-term chloride corrosion of SSWs. Overall, utilizing seawater and desalinated sea-sand in combination with SSWs can produce UHPC with improved strength and toughness, making it a suitable choice for applications where high durability and long-term mechanical performance is required.
Journal of Materials... arrow_drop_down Bradford Scholars@University of BradfordArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/jmcee7.mteng-16072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 56visibility views 56 download downloads 66 Powered bymore_vert Journal of Materials... arrow_drop_down Bradford Scholars@University of BradfordArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/jmcee7.mteng-16072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Alan Henry; Matt Folley; Trevor Whittaker;Abstract This paper investigates the hydrodynamics of a seabed-mounted, bottom-hinged, flap-type wave energy converter in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the wave force on the flap is the key determinant of power capture. The results from a physical modelling program have been used in conjunction with numerical data from WAMIT to validate the conceptual model. The work finds that designing the device to increase the wave force is more profitable than designing it to be tuned to the incident wave climate. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and pierce the water surface to reduce decoupling due to wave overtopping. It is concluded that, in order to maximize capture factor at a typical North Atlantic site, the flap should be approximately 20–30 m wide, with large diameter rounded side edges, having its pivot close to the seabed and its top edge piercing the water surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 01 Jan 2021 United KingdomPublisher:University of St Andrews Authors: Gillespie, Douglas Michael; Palmer, Laura Eve; MacAulay, Jamie Donald John; Sparling, Carol Elizabeth; +1 AuthorsGillespie, Douglas Michael; Palmer, Laura Eve; MacAulay, Jamie Donald John; Sparling, Carol Elizabeth; Hastie, Gordon Drummond;3D localizations of harbour porpoise clicks within 100m of a tidal stream turbine in the Pentland Firth (58°39'N 3°08'W) off the north coast of Scotland collected between October 2017 and April 2019
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17630/c3daebc2-0dfb-4702-941a-3a4e038951de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17630/c3daebc2-0dfb-4702-941a-3a4e038951de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2010 FrancePublisher:Informa UK Limited Sharma, Bharat R.; Amarasinghe, Upali A.; Shah, Tushaar; Bharati, Luna; Ambili, G.K.; Qureshi, Asad Sarwar; Singh, R.; Smakhtin, Vladimir U.; Xueliang Cai; Condappa, D. de; Mukherji, Aditi; Pant, Dhruba; Xenarios, Stefanos;handle: 10568/37269 , 10568/34693
The basins of the Indus and Ganges rivers cover 2.20 million km2 and are inhabited by more than a billion people. The region is under extreme pressures of population and poverty, unregulated utilization of the resources and low levels of productivity. The needs are: (1) development policies that are regionally differentiated to ensure resource sustainability and high productivity; (2) immediate development and implementation of policies for sound groundwater management and energy use; (3) improvement of the fragile food security and to broaden its base; and (4) policy changes to address land fragmentation and improved infrastructure. Meeting these needs will help to improve productivity, reduce rural poverty and improve overall human development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02508060.2010.512996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02508060.2010.512996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinUsman Ali; Mohammad Haris Shamsi; Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;handle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2021Embargo end date: 15 Mar 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Benxuan Li;doi: 10.17863/cam.65895
Currently, fossil fuels make up a significant proportion of global energy demand and cause many concerns, such as increasing greenhouse gas emission. Therefore, there is a considerable need for cost-effective, facile and efficient processing of environmental-friendly energy harvesting and storage systems. Solar energy is one of the most promising energy sources that meet the energy demand. The silicon-based solar cells exhibit competitive power conversion efficiency and dominate the solar cell market in recent years. In contrast, organic solar cells (OSCs) have emerged as promising third-generation photovoltaic devices owing to their outstanding properties such as the potential of low-cost mass manufacturing, lightweight, mechanical flexibility and easy processability. Therefore, OSCs have received growing attention from the research community. For solar cell technologies, a smectic liquid crystal C8-BTBT was selected in Chapter 3 due to its unique thermal dynamic and crystal properties. A range of ternary OSCs with and without C8-BTBT loading at gradient weight fractions were thermally treated and fabricated. In addition, the assessment of fabricated OSCs on the photovoltaic characteristics reveals the evolution of various cell parameters with annealing temperature and C8-BTBT weight fractions. The cell with 5 wt% C8-BTBT loading exhibited the best performance after thermal annealing treatment at 120 oC. Furthermore, flexible hydrogel substrates were fabricated for flexible OSCs in Chapter 4. The PHEMA hydrogel films were optimised via adjusting photopolymerisation duration under UV light. Based on the fabricated PHEMA substrates, flexible OSCs were subsequently made, whose extracted device parameters showed comparable characteristics with those in Chapter 3. Moreover, PHEMA-based OSCs can be dissolved in different types of polar solvents, which is promising for realising sustainable and recyclable solar cells. For the development of energy storage devices, asymmetric carbon nanohorns were proposed as an active material to fabricate flexible solid‐state carbon wire (CW)‐based electrochemical supercapacitors (ss‐CWECs) which exhibited high power density and ultra‐low cutoff frequency. Based on microscopy and electrochemical characterisation, the fundamental reaction mechanism in polyvinyl‐based electrolyte system was elucidated in Chapter 5, as being associated with deprotonation reaction under the acid, base, and elevated temperature conditions. In Chapter 6, by using activated carbon, multi‐walled carbon nanotubes, and single‐wall carbon nanohorns as hybrid electrode materials (5:1:1), remarkable specific length capacitance of 48.76 mF cm−1 and charge-discharge stability (over 2000 times cycles) of ss‐CWECs were demonstrated, which are the highest reported to date. Furthermore, a high‐pass filter for eliminating ultra‐low electronic noise was demonstrated, enabling an optical Morse Code communication system to be operated. vThe collective works in this thesis demonstrate novel energy conversion and storage applications with the liquid crystal in OSCs and carbon nanoparticles in supercapacitors. These results provide a step forwards in the development of energy conversion and storage devices for a more efficient energy system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.65895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.65895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Philipp Schepelmann; Michael Ritthoff; Adisa Azapagic; Harish Kumar Jeswani;Life Cycle Assessment (LCA) has matured over the past decades and become part of the broader field of sustainability assessment. To strengthen LCA as a tool and eventually increase its usefulness for sustainability decision-making, it is argued that there is a need to expand the ISO LCA framework by integration and connection with other concepts and methods. This paper explores the potential options for deepening and broadening the LCA methodologies beyond the current ISO framework for improved sustainability analysis. By investigating several environmental, economic and social assessment methods, the paper suggests some options for incorporating (parts of) other methods or combining with other methods for broadening and deepening the LCA.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2009.09.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 258 citations 258 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
download 12download downloads 12 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2009.09.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu