- home
- Search
- Energy Research
- Restricted
- Open Source
- Embargo
- GB
- Apollo
- Energy Research
- Restricted
- Open Source
- Embargo
- GB
- Apollo
description Publicationkeyboard_double_arrow_right Thesis 2024 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Wing, Trevelyan Sherman;doi: 10.17863/cam.112842
This thesis explores Germany’s *Energiewende* (‘energy transition’) and the role of citizen/community energy democracy initiatives at municipal and state levels in shaping developments that underpin this society-wide transformation - examining how grassroots agitation, in particular, has prompted meaningful action and policy change on the part of government at multiple levels. Using Berlin and Hamburg - Germany’s largest urban centers and leading city-states in the country’s federal system - as case studies, the research examines how citizens’ initiatives in both cities have campaigned for the remunicipalization of local energy networks to expedite, democratize, and incorporate social justice goals into each region’s Energiewende. Finally, this study pivots to consider the progress of the transition nationally in recent years, investigating how major events like the Covid-19 pandemic, watershed federal elections in 2021, war in Ukraine, and the resultant energy crisis have affected the evolution and direction of the Energiewende, and the important contributions of citizen/community energy initiatives to the national response here. The analytical framework draws on over 100 interviews conducted with relevant stakeholders and experts involved in the transition, representing different perspectives (e.g. on remunicipalization and the Energiewende itself) and diverse levels of government (e.g. from the district to federal level). This extensive body of original research is complemented by a wide array of other relevant source material that has likewise been consulted to inform this work and further evaluate the impacts of bottom-up energy democracy initiatives on the broader transition in Germany’s regions - and, by extension, nationally - as they continue to affect the pace and trajectory of the now-famous Energiewende. Ultimately, this study contributes an in-depth, ground-level analysis to the literature of key elements that have driven energy system change in Germany, shining a fresh light on the complex and interrelated nexus of sustained grassroots action, policy responses, and shifting sociopolitical realities that form the context in which the Energiewende has been (re)launched, reformed, and reimagined over the decades.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.112842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.112842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Gomezgil Yaspik, Vianney;doi: 10.17863/cam.102122
In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2022Embargo end date: 04 Nov 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Smith, Collin;doi: 10.17863/cam.90350
Ammonia has been responsible for feeding population growth in the 20th century through synthetic fertilizer, and is poised to become the preferred energy storage medium for a society powered by renewable electricity in the 21st century. However, conventional brown ammonia production through the Haber-Bosch process is optimized for utilization of centralized and steady energy supply from fossil-fuels. When shifting to distributed and intermittent energy supply through wind and solar energy, a re-optimization is required for a low-capital and flexible green ammonia production processes. This thesis re-designs and Haber-Bosch process by targeting the integration of reaction and separation in a single process vessel at low pressures, thereby achieving the simplification and down-scaling of the high pressure recycle loop of the Haber-Bosch process. Materials are developed for this purpose, the feasibility of integration is demonstrated, and mathematical modeling is utilized for assessing the application of the single-vessel process to a range of renewable energy sources in comparison to competing ammonia production processes. Herein, a catalyst with low-temperature (< 350°C) and high-conversion (i.e. near equilibrium) activity is developed using ruthenium nanoparticles as the active metal supported on ceria and promoted with cesium to mitigate hydrogen and ammonia inhibition, respectively. This catalyst is compared to commercial iron-based catalyst from the perspective of the final application. Concurrently, a high-temperature (> 300°C) manganese chloride absorbent is developed that resists decomposition and is stable when supported on silica. These catalyst and absorbent are integrated in a layered reactor configuration to demonstrate the feasibility of the integrated process by exceeding single-pass reaction equilibrium. Mathematical modelling of ammonia production processes illustrates that at small-scales (< 1 t day-1) the single-vessel process is optimal compared to the Haber-Bosch process due to its modular design. In addition, it can achieve simpler ramping because the Haber-Bosch process is constrained by heat-integration in the recycle loop and the potential for runaway reaction. For final application, the pairing of ammonia production processes with examples of intermittent solar and wind sources demonstrates that the flexibility of the production process is essential when considering non-ideal sources of energy with a long-term (e.g. seasonal) oscillations. Flexible ammonia production also expands the economic usage of ammonia as an energy storage vector from the seasonal to the weekly time-scale, with advantage compared to batteries or hydrogen. The work of this thesis provides a framework for advancing the electrification of the chemical industry given the novel constrains of intermittent and distributed renewable energy. A systems level approach is applied from the ground up, starting from material design and progressing to optimized process design and application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Embargo end date: 14 Feb 2020 United KingdomPublisher:Wilmington Publishing Ltd. doi: 10.17863/cam.49244
ON 16 NOVEMBER 2000, the final report of the World Commission on Dams (WCD) was launched in London, in the presence of South Africa’s former president Nelson Mandela. This represented a remarkable milestone in the history of dam policy and politics. During its two-year existence, WCD had conducted the most extensive review of research and evidence regarding the planning, impacts, and management of large dams. It had engaged with numerous stakeholders around the globe. It also made comprehensive recommendations about how to improve dam planning and management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.49244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.49244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2024 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Silseth, Tobias;doi: 10.17863/cam.109687
From the British debate on the depletion of coal in 1865 to the First World Power Conference held in London in 1924, scientists, engineers, industrialists, and politicians produced new interpretations of the past, present, and future in terms of the mobilisation of energy resources. This thesis identifies an emerging ‘energy developmentalism’, which called for maximising energy use to maintain or improve a nation’s place in international competition. Energy developmentalism was not a marginal worldview confined to ‘energeticists’, but a coherent set of claims, measurements, and arguments that informed energy governance on an international scale. Rather than focusing on a single resource, energy developmentalism applied a unified schema to all energy sources, including those like solar and tidal energy that were still mostly theoretical. Drawing on sources from across Europe, while staying grounded in political changes in Britain and France, makes it possible to understand how a general formula for transforming raw materials with maximum efficiency was applied differently depending on specific political contexts. This period saw the articulation of problems like the depletion of resources, the difference between renewable and nonrenewable energy, the intermittency of renewables, the overreliance on a single source of energy, and the centrality of energy to modern economies – problems that are often associated with later periods. Scientific measurements of efficiency, horsepower, and kilowatts became operators in political debates centred on questions of national standing and progress. Even as oil became increasingly important in the world economy, the delegates at the First World Power Conference transformed a vision of a renewable energy future into one of a general expansion of energy consumption as the basis of progress. In so doing, they downplayed the continued importance of fossil fuels and equated ‘conservation’ with the fullest possible use of all energy sources, renewable or not.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.109687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.109687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2025 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Farag, Nadia;doi: 10.17863/cam.117817
Redox flow batteries (RFBs) are a promising technology for grid-level energy storage. The ability to decouple energy and power, as well as the potential for low-cost and safe materials, make them particularly suited to this application. However, there is a lack of viable organic catholytes for RFBs and research thus far has primarily focussed on anolytes. Research in this thesis focuses on novel catholytes, degradation studies and electrolyte optimisation for aqueous organic redox flow batteries (AORFBs), the most challenging and yet the most promising area of this technology. In the first results chapter (Chapter 3), a series of triarylamines was synthesised. Initial electrochemical testing (using cyclic voltammetry) revealed one of these candidates, amino-functionalised 4-amino-trisphenyl amine, proved to be the most promising. However, battery cycling with this as the catholyte results in extensive polymerisation, leading to rapid capacity fade. This rapid capacity fade was improved by electrolyte optimisation, and utilising a mixed-salt system of 0.5 M HCl and 0.5 M H3PO4 it was possible to decrease capacity fade, increase coulombic efficiency and access more theoretical capacity. Chapter 4 explores commercially available phenothiazine dyes. Nicotinamide (NA) was used to increase solubility, specifically, the solubility of the most promising candidate explored, azure-a (AA), was doubled from 1 M to ca. 2 M. When cycled with NA in the supporting electrolyte, AA, had relatively stable cycling performance, though only half of the theoretical capacity was reached. Evidence suggests that this is the result of dimerisation of AA-based redox species. An extensive study using electrochemical impedance spectroscopy (EIS) showed that NA prevents a thick, charge-transfer blocking, film from forming on interphases in the cell (i.e. the electrode or membrane), thus improving the cycling performance. Chapter 5 further investigated both the dimerisation of AA-based species and their interaction with NA which leads to the observed improved performance. Through spectroscopic studies (NMR, EPR and UV/vis) it was found that there are at least four dimeric AA-based species in solution (most likely different dimer conformations). The role of pH on AA aggregation is also explored here for the first time. Finally, the origin of the improvement in battery performance using AA is shown to be preferential hydrogen-bonding with NA which intercepts AA aggregate, therefore reducing dimerisation and subsequent polymerisation. The final research chapter (Chapter 6) explores synthetic modification of phenothiazine, which is otherwise insoluble in aqueous conditions. A sulfonated propyl chain was found to improve solubility up to 1.15 M in 1 M HCl. However, upon cycling the sulfonate group was lost and an emulsion formed, leading to rapid capacity loss. This was improved by utilising NA as an additive (as shown previously in Chapters 4 and 5). Overall, this thesis has found that synthesising novel compounds presents many challenges, especially as the performance of candidate catholytes cannot be accurately predicted before experimental cycling. Ultimately the greatest improvements in cycling performance were achieved through electrolyte optimisation rather than synthetic changes in a particular catholyte family. It is therefore recommended to focus future research efforts on optimisation of the supporting electrolyte as the means for improving battery performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2025 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Hoole, Elisapeththu;doi: 10.17863/cam.117769
This dissertation is an investigation of the gendered dynamics of sustainable agriculture practiced by women operating commercial-scale, sustainable farms in Jaffna, Sri Lanka, with a focus on women's agency and freedoms within the agricultural sector. Women operate 26% of farms in Jaffna, yet women are notably absent from agricultural development policies. As climate change threatens the livelihoods and security of farmers in Jaffna, establishing data on the opportunities, barriers, and experiences of women as farmers is crucial for developing an accurate contextual understanding necessary to inform effective policies that ensure sustained food production and livelihood security. Using the capabilities approach as a conceptual framework and 50 individual interviews of with women farm operators in 2021, during COVID, this research examines the socio-cultural, economic, and policy-driven barriers that constrain women's agency and freedoms as primary farm operators. The study identifies a duality in women's experiences: while they demonstrate remarkable agency in sustainable agricultural practices within their farms, they face significant systemic barriers in engaging with external economic systems. A central insight of the research is the contrasting roles played by middle operators, who exploit women’s dependency to access external markets, and cooperatives, which serve as transformative bridges by fostering collective empowerment and expanding women's capabilities across both spheres. The study further highlights the innovative localized strategies women employ to adapt to climate vulnerabilities and systemic constraints. By blending traditional ecological knowledge with modern agricultural technologies, women have developed integrated farm management systems that optimize productivity, enhance biodiversity, and build resilience to environmental shocks. These findings challenge the conventional image of farmers as solely men battling nature and instead position women as central agents of ecological stewardship and sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2021Embargo end date: 15 Jan 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Rebecca Haboucha;doi: 10.17863/cam.63327
Climate change has been widely recognised as one of the most urgent and growing threats to natural and cultural heritage in the twenty-first century, and the indelible impact of humanity has led to the definition of a new geological epoch, the Anthropocene. Indigenous peoples are disproportionately affected by natural and human-induced changes to the environment. Their vulnerability is exacerbated by centuries of cultural and territorial disenfranchisement within settler-colonial nations. This dissertation aims at understanding Indigenous perceptions of heritage in the face of climate change and its intersection with the impacts of settler- colonialism. It analyses how these on-the-ground perceptions can, in turn, inform heritage organisations and contribute to safeguarding the many facets of tangible and intangible Indigenous heritage for future generations in the Anthropocene. This is accomplished through a comparative, transnational case study of two communities each from the Dehcho First Nations in the Northwest Territories, Canada, and the Aymara and Quechua peoples in northern Chile. I use a multi-method approach consisting of semi-structured interviews, oral histories and participant observation. The data is complemented by environmental and heritage legislation and grey literature at multiple organisational scales for both case studies. Three lines of enquiry are explored through an applied comparative thematic analysis: i) the perceptions of climate change and associated land loss/change among Indigenous groups and how this impacts each group’s notions of challenges to its cultural identity; ii) the intersection of the effects of post- colonialism, ongoing industrial activities and climate change on the intergenerational transmission of ancestral knowledge and notions of place attachment; and iii) how international, national and regional political and sociocultural rhetoric on environmental and heritage conservation affect local, grassroots considerations for safeguarding heritage. The similarities and contrasts of the Dehcho First Nations, Aymara and Quechua experiences of climate change across the North-South divide are related from the grassroots to arrive at redefining heritage practices in the Anthropocene. The results demonstrate that decolonising heritage is not only necessary, but that this decolonisation depends on building and actively engaging in intercultural empathy through the global threat of climate change. In order to understand how Indigenous practices, places, and items are valorised—attributed value—as heritage in the face of climate change, one must empathise with the cultural loss that exists in the temporal and cognitive spaces between Indigenous individuals’ moments of nostalgic reference and today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.63327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.63327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2025 United KingdomPublisher:Apollo - University of Cambridge Repository doi: 10.17863/cam.117387
The production of fuels and other value-added chemicals from sunlight is one of the proposed sustainable pathways to fulfil the constantly increasing energy demand while pushing towards a carbon-neutral circular economy. Photocatalytic (PC) and photo(electro)catalytic (PEC) systems, based on a semiconductor/liquid electrolyte junction, are capable of converting and storing the energy from the sun into chemical bonds. Over the years, poly(heptazine imide) ionic carbon nitride, a cheap, non-toxic, noble metal-free polymeric semiconductor has been exploited mainly as photocatalyst, and more recently, as photoelectrocatalyst. Although the performance of this material in PEC systems has been improving, its application is still hindered by low photocurrent response and poor long-term stability due to its notably high recombination rates, inefficient charge separation and transport, and consequent photo-degradation. Moreover, its compatibility with bio-based systems for green fuel and chemical production has been poorly exploited and rationalised. This thesis tackles these challenges by introducing a versatile and facile method to synthesise highly performant carbon nitride photoanodes, which can be interfaced with metal- and enzyme-based catalysts for CO2-reduction and hydrogen production with record photocurrents and stabilities. State-of-the-art cyanamide-functionalised poly(heptazine imide) (PHI) ionic carbon nitride (NCNCNx) electrodes were produced by co-deposition with indium tin oxide (ITO) nanoparticles, binding agents and conductive bridges, on a thin alumina-coated FTO glass substrate. The Al2O3|ITO:NCNCNx photoelectrodes displayed remarkably low onset potential and an outstanding 1.4 ± 0.2 mA cm–2 at 1.23 V vs the reversible hydrogen electrode (RHE) when selectively oxidising 4-methylbenzyl alcohol. Detailed spectroscopic studies shine a light on electron extraction kinetics within the photoanode and show that the addition of the ITO nanoparticles significantly improves the extraction of electrons from the carbon nitride, which otherwise remain trapped in the material, whilst the alumina underlayer reduces the electrical resistance between the ITO nanoparticles and the FTO substrate leading to record photocurrents. Furthermore, record stability of over 51 hours under continuous operation was achieved by systematically studying the effect of applied potential and light intensity on the ITO:NCNCNx photoanode long-term performance. Voltage-dependent spectroscopic analysis revealed irreversible changes in the carbon nitride morphology and electrochemical behaviour after applying any potential higher than 0.4 V vs RHE and low light intensity. Moreover, operating under concentrated solar light proved fundamental in ensuring high stability. To take advantage of the local temperature increase, the photoanode was coupled to a thermoelectric (TEG) unit, capable of converting the otherwise wasted heat into additional voltage, and employed in a TEG-PEC cell to drive glycerol oxidation coupled to CO2-to-CO reduction for over 70 hours under no external applied bias. As a proof of concept, the ITO:NCNCNx photoanode was also employed in an unassisted 2-electrode photoelectrochemical setup wired to a formate dehydrogenase (FDH) enzyme bio-cathode to perform selective CO2-to-formate conversion. Even under 1 sun, the bio-hybrid PEC system could withstand 10 hours of operation. Finally, the use of a [FeFe]-hydrogenase (H2-evolving enzyme) possessing a positive surface charge around the active site made it possible to directly interface it to the negatively charged cyanamide-modified graphitic carbon nitride (NCNCNx) as photocatalyst powder in solution, without the need for an electron mediator. In conclusion, this thesis showcases significant advancements in addressing the inherent challenges of poly(heptazine imide) ionic carbon nitride for photo(electro)catalytic applications. Through a systematic and fundamental approach, state-of-the-art photoanodes with record-breaking photocurrents and long-term stability were developed for the selective oxidation of organic waste-derived substrates. The integration of NCNCNx in PEC devices and a bio-hybrid PC system demonstrated its potential to drive un-assisted CO2 reduction to green fuels. By improving the efficiency, stability, and versatility of this promising carbon-based polymeric semiconductor, this thesis aims to serve as a platform for further research on – and application of - carbon nitride materials for photo(electro)catalytic and biohybrid systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.117387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu