- home
- Search
- Energy Research
- Open Access
- Restricted
- Open Source
- GB
- Agritrop
- Energy Research
- Open Access
- Restricted
- Open Source
- GB
- Agritrop
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, United Kingdom, United KingdomPublisher:Wiley Authors: Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; +8 AuthorsJulian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; Flavio Breseghello; Tao Li; Adriano Pereira de Castro; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Andrew J. Challinor;AbstractRice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on‐farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200–600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%–41% growing area, depending on RCP), selection should be done under both stress‐free and terminal stress conditions; for the favorable environment (FE, 27%–40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%–27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%–60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 170 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, Belgium, United States, United States, FrancePublisher:Wiley Nicolas Kosoy; Philippe Méral; Walter Pengue; D. Ezzine de Blas; F. Saenz; Lorenzo Pellegrini; Richard B. Norgaard; P. Mibielli; Pieter Leroy; Fikret Adaman; Begüm Özkaynak; Esteve Corbera; Unai Pascual; Unai Pascual; Bhaskar Vira; Joshua Farley; K. Urama; J. F. le Coq; B. Aguilar; Géraldine Froger; Peter H. May; Erik Gómez-Baggethun; Erik Gómez-Baggethun; Arild Vatn; G. Van Hecken; Jesus Ramos-Martin; John M. Gowdy; Romain Pirard; Eduardo García-Frapolli; M. Perez; Roldan Muradian; Denis Pesche; Bina Agarwal; Laura Rival; Murat Arsel;handle: 2066/197230 , 2066/122702 , 10067/1107760151162165141
AbstractIn this commentary we critically discuss the suitability of payments for ecosystem services and the most important challenges they face. While such instruments can play a role in improving environmental governance, we argue that over‐reliance on payments as win‐win solutions might lead to ineffective outcomes, similar to earlier experience with integrated conservation and development projects. Our objective is to raise awareness, particularly among policy makers and practitioners, about the limitations of such instruments and to encourage a dialogue about the policy contexts in which they might be appropriate.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2013License: CC BY NC NDFull-Text: https://hal.science/hal-03067404Data sources: Bielefeld Academic Search Engine (BASE)The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/calsfac/52Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 379 citations 379 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2013License: CC BY NC NDFull-Text: https://hal.science/hal-03067404Data sources: Bielefeld Academic Search Engine (BASE)The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/calsfac/52Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Authors: Kintché, Kokou; Guibert, Hervé; Bonfoh, Bassirou; Tittonell, Pablo;Using 40-year experiment data from a mono-modal rainfall area of northern Togo, we analyzed soil fertility dynamics when 2 and 3-year fallows were alternated with 3-year rotation of groundnut, cotton and sorghum. The control treatment consisted to continuous cultivate the soil in a rotation of groundnut/cotton/sorghum without fallow periods. For each rotation, two fertilisation rates were applied: no fertilisation and mineral fertiliser application during the cropping and/or the fallow periods. Yields of unfertilised crops, which averaged 1 t ha-1 during the first years of cultivation, were often nil in the long-term. In the long-term, yields of fertilised cotton and sorghum decreased by 32 and 50 %, respectively compared to the average of 2.4 and 1.6 t ha-1 obtained during the first decade of cultivation. The long-term decline in crop productivity was mitigated when fallow periods were alternated with cropping periods, and consequently there was partial compensation in terms of production for the unproductive fallowed plots. Long-term yields of fertilised cotton and sorghum in the periodically fallowed plots were 40 and 50 % higher than those in continuously cropped plots, respectively; they were 90 and 60 % higher than those in continuously cropped plots without fertilisation. Like for crop productivity, soil C, N and exchangeable Ca and Mg decreased less in periodically fallowed plots than in continuously cropped plots. The limited soil C decline when fallows were alternated with crops appears to be the consequence of no-tillage period rather than the effect of the highest C inputs to the soil.
Nutrient Cycling in ... arrow_drop_down Nutrient Cycling in AgroecosystemsArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Nutrient Cycling in AgroecosystemsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10705-015-9681-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nutrient Cycling in ... arrow_drop_down Nutrient Cycling in AgroecosystemsArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Nutrient Cycling in AgroecosystemsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10705-015-9681-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | AGREENSKILLSEC| AGREENSKILLSChristophe Klopp; Evandro Novaes; Evandro Novaes; Jean-Marc Gion; Emilie Villar; Christophe Plomion; Christophe Plomion; Céline Noirot; Matias Kirst;Abstract Background In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. Results Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. Conclusions For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentCIRAD: HAL (Agricultural Research for Development)Article . 2011Full-Text: https://hal.inrae.fr/hal-02645044Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-12-538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentCIRAD: HAL (Agricultural Research for Development)Article . 2011Full-Text: https://hal.inrae.fr/hal-02645044Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-12-538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, FrancePublisher:American Association for the Advancement of Science (AAAS) Neumann, K; Eggert, M. K. H.; Oslisly, R.; Clist, B; Denham, Timothy; de Maretj, Pierre; Ozainne, S; Hildebrand, E; Bostoen, K; Salzmann, U; Schwartz, D; Eichhorn, B; Tchiengue, B; Hohn, A.;pmc: PMC3556809
handle: 1885/75108
Bayon et al . (Reports, 9 March 2012, p. 1219) claim that the “rainforest crisis” in Central Africa centered around 2500 years before the present “was not triggered by natural climatic factors” and that it was caused by widespread deforestation resulting from the arrival of the Bantu colonists. However, there is a consensus among palaeoecologists that this landscape change and the related physical erosion it caused was due mainly to a shift to more seasonal rainfall regime.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, France, France, Australia, Australia, FrancePublisher:Wiley John Palmer; Roderick Zagt; Jerome K. Vanclay; Douglas Sheil; Timothy Synnott; Plinio Sist; Bronson W. Griscom; Francis E. Putz; Francis E. Putz; Michelle A. Pinard; Marielos Peña-Claros; Pieter A. Zuidema; Pieter A. Zuidema; Sylvie Gourlet-Fleury;handle: 10568/94381
AbstractMost tropical forests outside protected areas have been or will be selectively logged so it is essential to maximize the conservation values of partially harvested areas. Here we examine the extent to which these forests sustain timber production, retain species, and conserve carbon stocks. We then describe some improvements in tropical forestry and how their implementation can be promoted. A simple meta‐analysis based on >100 publications revealed substantial variability but that: timber yields decline by about 46% after the first harvest but are subsequently sustained at that level; 76% of carbon is retained in once‐logged forests; and, 85–100% of species of mammals, birds, invertebrates, and plants remain after logging. Timber stocks will not regain primary‐forest levels within current harvest cycles, but yields increase if collateral damage is reduced and silvicultural treatments are applied. Given that selectively logged forests retain substantial biodiversity, carbon, and timber stocks, this “middle way” between deforestation and total protection deserves more attention from researchers, conservation organizations, and policy‐makers. Improvements in forest management are now likely if synergies are enhanced among initiatives to retain forest carbon stocks (REDD+), assure the legality of forest products, certify responsible management, and devolve control over forests to empowered local communities.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94381Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00242.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 416 citations 416 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94381Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00242.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, France, DenmarkPublisher:Informa UK Limited Funded by:EC | I-REDD+EC| I-REDD+Mertz, Ole; Muller, Daniel; Sikor, Thomas; Hett, Cornelia; Heinimann, Andreas; Castella, Jean-Christophe; Lestrelin, Guillaume; Ryan, Casey M.; Reay, David S.; Schmidt-Vogt, Dietrich; Danielsen, Finn; Theilade, Ida; van Noordwijk, Meine; Verchot, Louis; Burgess, Neil D.; Berry, Nicholas J.; Pham, Thu Thuy; Messerli, Peter; Xu, Jianchu; Fensholt, Rasmus; Hostert, Patrick; Pflugmacher, Dirk; Bruun, Thilde Bech; de Neergaard, Andreas; Dons, Klaus; Dewi, Sonya; Rutishauer, Ervan; Sun, Zhanli;handle: 10568/95438
International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and plantations. In this paper we therefore review current research on how avoided forest degradation may affect emissions of greenhouse gases (GHG) and expected co-benefits in terms of biodiversity and livelihoods. There are still high uncertainties in measuring and monitoring emissions of carbon and other GHG from mosaic landscapes with forest degradation since most research has focused on binary analyses of forest vs. deforested land. Studies on the impacts of forest degradation on biodiversity contain mixed results and there is little empirical evidence on the influence of REDD+ on local livelihoods and tenure security, partly due to the lack of actual payment schemes. Governance structures are also more complex in landscapes with degraded forests as there are often multiple owners and types of rights to land and trees. Recent technological advances in remote sensing have improved estimation of carbon stock changes but establishment of historic reference levels is still challenged by the availability of sensor systems and ground measurements during the reference period. The inclusion of forest degradation in REDD+ calls for a range of new research efforts to enhance our knowledge of how to assess the impacts of avoided forest degradation. A first step will be to ensure that complex mosaic landscapes can be recognised under REDD+ on their own merits.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Harmand, Jean-Michel; Ávila, Hector; Dambrine, Etienne; Skiba, Ute; de Miguel, Sergio; Renderos, Reina Vanessa; Oliver, Robert; Jiménez, Francisco; Beer, John;Nitrogen fertilization is a key factor for coffee production but creates a risk of water contamination through nitrate (NO 3 − ) leaching in heavily fertilized plantations under high rainfall. The inclusion of fast growing timber trees in these coffee plantations may increase total biomass and reduce nutrient leaching. Potential controls of N loss were measured in an unshaded coffee (Coffea arabica L.) plot and in an adjacent coffee plot shaded with the timber species Eucalyptus deglupta Blume (110 trees ha−1), established on an Acrisol that received 180 kg N ha−1 as ammonium-nitrate and 2,700 mm yr−1 rainfall. Results of the one year study showed that these trees had little effect on the N budget although some N fluxes were modified. Soil N mineralization and nitrification rates in the 0–20 cm soil layer were similar in both systems (≈280 kg N ha−1 yr−1). N export in coffee harvest (2002) was 34 and 25 kg N ha−1 yr−1 in unshaded and shaded coffee, and N accumulation in permanent biomass and litter was 25 and 45 kg N ha−1 yr−1, respectively. The losses in surface runoff (≈0.8 kg mineral N ha−1 yr−1) and N2O emissions (1.9 kg N ha−1 yr−1) were low in both cases. Lysimeters located at 60, 120, and 200 cm depths in shaded coffee, detected average concentrations of 12.9, 6.1 and 1.2 mg NO 3 − -N l−1, respectively. Drainage was slightly reduced in the coffee-timber plantation. NO 3 − leaching at 200 cm depth was about 27 ± 10 and 16 ± 7 kg N ha−1 yr−1 in unshaded and shaded coffee, respectively. In both plots, very low NO 3 − concentrations in soil solution at 200 cm depth (and in groundwater) were apparently due to NO 3 − adsorption in the subsoil but the duration of this process is not presently known. In these conventional coffee plantations, fertilization and agroforestry practices must be refined to match plant needs and limit potential NO 3 − contamination of subsoil and shallow soil water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2012 France, PortugalPublisher:Elsevier BV Kassam, Amir H.; Friedrich, Theodor; Derpsch, Rolf; Lahmar, Rabah; Mrabet, Rachid; Basch, Gottlieb; González-Sánchez, Emilio J.; Serraj, Rachid;The objective of this article is to review: (a) the principles that underpin conservation agriculture (CA) ecologically and operationally; (b) the potential benefits that can be harnessed through CA systems in the dry Mediterranean climate; (c) current status of adoption and spread of CA in the dry Mediterranean climate countries; and (d) opportunities for CA in the Central and West Asia and North Africa (CWANA) region. CA, comprising minimum mechanical soil disturbance and no-tillage seeding, organic mulch cover, and crop diversification is now practised on some 125 million ha, corresponding to about 9% of the global arable cropped land. The area under CA is spread across all continents and many agro-ecologies, including the dry Mediterranean climate. Empirical and scientific evidence is presented to show that significant productivity, economic, social and environmental benefits exist that can be harnessed through the adoption of CA in the dry Mediterranean climates, including those in the CWANA region. The benefits include: higher productivity and income; climate change adaptation and reduced vulnerability to the erratic rainfall distribution; and reduced greenhouse gas emissions. CA is now spread across several Mediterranean climate countries outside the Mediterranean basin particularly in South America, South Africa and Australia. In the CWANA region, CA is perceived to be a powerful tool of sustainable land management but it has not yet taken off in a serious manner except in Kazakhstan. Research on CA in the CWANA region has shown that there are opportunities for CA adoption in rainfed and irrigated farming systems involving arable and perennial crops as well as livestock.
Field Crops Research arrow_drop_down Repositório Científico da Universidade de ÉvoraPart of book or chapter of book . 2012Data sources: Repositório Científico da Universidade de Évoraadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2012.02.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 211 citations 211 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Field Crops Research arrow_drop_down Repositório Científico da Universidade de ÉvoraPart of book or chapter of book . 2012Data sources: Repositório Científico da Universidade de Évoraadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2012.02.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, United Kingdom, United KingdomPublisher:Wiley Authors: Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; +8 AuthorsJulian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; Flavio Breseghello; Tao Li; Adriano Pereira de Castro; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Andrew J. Challinor;AbstractRice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on‐farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200–600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%–41% growing area, depending on RCP), selection should be done under both stress‐free and terminal stress conditions; for the favorable environment (FE, 27%–40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%–27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%–60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 170 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, Belgium, United States, United States, FrancePublisher:Wiley Nicolas Kosoy; Philippe Méral; Walter Pengue; D. Ezzine de Blas; F. Saenz; Lorenzo Pellegrini; Richard B. Norgaard; P. Mibielli; Pieter Leroy; Fikret Adaman; Begüm Özkaynak; Esteve Corbera; Unai Pascual; Unai Pascual; Bhaskar Vira; Joshua Farley; K. Urama; J. F. le Coq; B. Aguilar; Géraldine Froger; Peter H. May; Erik Gómez-Baggethun; Erik Gómez-Baggethun; Arild Vatn; G. Van Hecken; Jesus Ramos-Martin; John M. Gowdy; Romain Pirard; Eduardo García-Frapolli; M. Perez; Roldan Muradian; Denis Pesche; Bina Agarwal; Laura Rival; Murat Arsel;handle: 2066/197230 , 2066/122702 , 10067/1107760151162165141
AbstractIn this commentary we critically discuss the suitability of payments for ecosystem services and the most important challenges they face. While such instruments can play a role in improving environmental governance, we argue that over‐reliance on payments as win‐win solutions might lead to ineffective outcomes, similar to earlier experience with integrated conservation and development projects. Our objective is to raise awareness, particularly among policy makers and practitioners, about the limitations of such instruments and to encourage a dialogue about the policy contexts in which they might be appropriate.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2013License: CC BY NC NDFull-Text: https://hal.science/hal-03067404Data sources: Bielefeld Academic Search Engine (BASE)The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/calsfac/52Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 379 citations 379 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2013License: CC BY NC NDFull-Text: https://hal.science/hal-03067404Data sources: Bielefeld Academic Search Engine (BASE)The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/calsfac/52Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Authors: Kintché, Kokou; Guibert, Hervé; Bonfoh, Bassirou; Tittonell, Pablo;Using 40-year experiment data from a mono-modal rainfall area of northern Togo, we analyzed soil fertility dynamics when 2 and 3-year fallows were alternated with 3-year rotation of groundnut, cotton and sorghum. The control treatment consisted to continuous cultivate the soil in a rotation of groundnut/cotton/sorghum without fallow periods. For each rotation, two fertilisation rates were applied: no fertilisation and mineral fertiliser application during the cropping and/or the fallow periods. Yields of unfertilised crops, which averaged 1 t ha-1 during the first years of cultivation, were often nil in the long-term. In the long-term, yields of fertilised cotton and sorghum decreased by 32 and 50 %, respectively compared to the average of 2.4 and 1.6 t ha-1 obtained during the first decade of cultivation. The long-term decline in crop productivity was mitigated when fallow periods were alternated with cropping periods, and consequently there was partial compensation in terms of production for the unproductive fallowed plots. Long-term yields of fertilised cotton and sorghum in the periodically fallowed plots were 40 and 50 % higher than those in continuously cropped plots, respectively; they were 90 and 60 % higher than those in continuously cropped plots without fertilisation. Like for crop productivity, soil C, N and exchangeable Ca and Mg decreased less in periodically fallowed plots than in continuously cropped plots. The limited soil C decline when fallows were alternated with crops appears to be the consequence of no-tillage period rather than the effect of the highest C inputs to the soil.
Nutrient Cycling in ... arrow_drop_down Nutrient Cycling in AgroecosystemsArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Nutrient Cycling in AgroecosystemsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10705-015-9681-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nutrient Cycling in ... arrow_drop_down Nutrient Cycling in AgroecosystemsArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Nutrient Cycling in AgroecosystemsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10705-015-9681-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | AGREENSKILLSEC| AGREENSKILLSChristophe Klopp; Evandro Novaes; Evandro Novaes; Jean-Marc Gion; Emilie Villar; Christophe Plomion; Christophe Plomion; Céline Noirot; Matias Kirst;Abstract Background In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. Results Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. Conclusions For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentCIRAD: HAL (Agricultural Research for Development)Article . 2011Full-Text: https://hal.inrae.fr/hal-02645044Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-12-538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2011Full-Text: https://hal.inrae.fr/hal-02645044/documentCIRAD: HAL (Agricultural Research for Development)Article . 2011Full-Text: https://hal.inrae.fr/hal-02645044Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-12-538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, FrancePublisher:American Association for the Advancement of Science (AAAS) Neumann, K; Eggert, M. K. H.; Oslisly, R.; Clist, B; Denham, Timothy; de Maretj, Pierre; Ozainne, S; Hildebrand, E; Bostoen, K; Salzmann, U; Schwartz, D; Eichhorn, B; Tchiengue, B; Hohn, A.;pmc: PMC3556809
handle: 1885/75108
Bayon et al . (Reports, 9 March 2012, p. 1219) claim that the “rainforest crisis” in Central Africa centered around 2500 years before the present “was not triggered by natural climatic factors” and that it was caused by widespread deforestation resulting from the arrival of the Bantu colonists. However, there is a consensus among palaeoecologists that this landscape change and the related physical erosion it caused was due mainly to a shift to more seasonal rainfall regime.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, France, France, Australia, Australia, FrancePublisher:Wiley John Palmer; Roderick Zagt; Jerome K. Vanclay; Douglas Sheil; Timothy Synnott; Plinio Sist; Bronson W. Griscom; Francis E. Putz; Francis E. Putz; Michelle A. Pinard; Marielos Peña-Claros; Pieter A. Zuidema; Pieter A. Zuidema; Sylvie Gourlet-Fleury;handle: 10568/94381
AbstractMost tropical forests outside protected areas have been or will be selectively logged so it is essential to maximize the conservation values of partially harvested areas. Here we examine the extent to which these forests sustain timber production, retain species, and conserve carbon stocks. We then describe some improvements in tropical forestry and how their implementation can be promoted. A simple meta‐analysis based on >100 publications revealed substantial variability but that: timber yields decline by about 46% after the first harvest but are subsequently sustained at that level; 76% of carbon is retained in once‐logged forests; and, 85–100% of species of mammals, birds, invertebrates, and plants remain after logging. Timber stocks will not regain primary‐forest levels within current harvest cycles, but yields increase if collateral damage is reduced and silvicultural treatments are applied. Given that selectively logged forests retain substantial biodiversity, carbon, and timber stocks, this “middle way” between deforestation and total protection deserves more attention from researchers, conservation organizations, and policy‐makers. Improvements in forest management are now likely if synergies are enhanced among initiatives to retain forest carbon stocks (REDD+), assure the legality of forest products, certify responsible management, and devolve control over forests to empowered local communities.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94381Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00242.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 416 citations 416 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94381Data sources: Bielefeld Academic Search Engine (BASE)Conservation LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1755-263x.2012.00242.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, France, DenmarkPublisher:Informa UK Limited Funded by:EC | I-REDD+EC| I-REDD+Mertz, Ole; Muller, Daniel; Sikor, Thomas; Hett, Cornelia; Heinimann, Andreas; Castella, Jean-Christophe; Lestrelin, Guillaume; Ryan, Casey M.; Reay, David S.; Schmidt-Vogt, Dietrich; Danielsen, Finn; Theilade, Ida; van Noordwijk, Meine; Verchot, Louis; Burgess, Neil D.; Berry, Nicholas J.; Pham, Thu Thuy; Messerli, Peter; Xu, Jianchu; Fensholt, Rasmus; Hostert, Patrick; Pflugmacher, Dirk; Bruun, Thilde Bech; de Neergaard, Andreas; Dons, Klaus; Dewi, Sonya; Rutishauer, Ervan; Sun, Zhanli;handle: 10568/95438
International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and plantations. In this paper we therefore review current research on how avoided forest degradation may affect emissions of greenhouse gases (GHG) and expected co-benefits in terms of biodiversity and livelihoods. There are still high uncertainties in measuring and monitoring emissions of carbon and other GHG from mosaic landscapes with forest degradation since most research has focused on binary analyses of forest vs. deforested land. Studies on the impacts of forest degradation on biodiversity contain mixed results and there is little empirical evidence on the influence of REDD+ on local livelihoods and tenure security, partly due to the lack of actual payment schemes. Governance structures are also more complex in landscapes with degraded forests as there are often multiple owners and types of rights to land and trees. Recent technological advances in remote sensing have improved estimation of carbon stock changes but establishment of historic reference levels is still challenged by the availability of sensor systems and ground measurements during the reference period. The inclusion of forest degradation in REDD+ calls for a range of new research efforts to enhance our knowledge of how to assess the impacts of avoided forest degradation. A first step will be to ensure that complex mosaic landscapes can be recognised under REDD+ on their own merits.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Harmand, Jean-Michel; Ávila, Hector; Dambrine, Etienne; Skiba, Ute; de Miguel, Sergio; Renderos, Reina Vanessa; Oliver, Robert; Jiménez, Francisco; Beer, John;Nitrogen fertilization is a key factor for coffee production but creates a risk of water contamination through nitrate (NO 3 − ) leaching in heavily fertilized plantations under high rainfall. The inclusion of fast growing timber trees in these coffee plantations may increase total biomass and reduce nutrient leaching. Potential controls of N loss were measured in an unshaded coffee (Coffea arabica L.) plot and in an adjacent coffee plot shaded with the timber species Eucalyptus deglupta Blume (110 trees ha−1), established on an Acrisol that received 180 kg N ha−1 as ammonium-nitrate and 2,700 mm yr−1 rainfall. Results of the one year study showed that these trees had little effect on the N budget although some N fluxes were modified. Soil N mineralization and nitrification rates in the 0–20 cm soil layer were similar in both systems (≈280 kg N ha−1 yr−1). N export in coffee harvest (2002) was 34 and 25 kg N ha−1 yr−1 in unshaded and shaded coffee, and N accumulation in permanent biomass and litter was 25 and 45 kg N ha−1 yr−1, respectively. The losses in surface runoff (≈0.8 kg mineral N ha−1 yr−1) and N2O emissions (1.9 kg N ha−1 yr−1) were low in both cases. Lysimeters located at 60, 120, and 200 cm depths in shaded coffee, detected average concentrations of 12.9, 6.1 and 1.2 mg NO 3 − -N l−1, respectively. Drainage was slightly reduced in the coffee-timber plantation. NO 3 − leaching at 200 cm depth was about 27 ± 10 and 16 ± 7 kg N ha−1 yr−1 in unshaded and shaded coffee, respectively. In both plots, very low NO 3 − concentrations in soil solution at 200 cm depth (and in groundwater) were apparently due to NO 3 − adsorption in the subsoil but the duration of this process is not presently known. In these conventional coffee plantations, fertilization and agroforestry practices must be refined to match plant needs and limit potential NO 3 − contamination of subsoil and shallow soil water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2012 France, PortugalPublisher:Elsevier BV Kassam, Amir H.; Friedrich, Theodor; Derpsch, Rolf; Lahmar, Rabah; Mrabet, Rachid; Basch, Gottlieb; González-Sánchez, Emilio J.; Serraj, Rachid;The objective of this article is to review: (a) the principles that underpin conservation agriculture (CA) ecologically and operationally; (b) the potential benefits that can be harnessed through CA systems in the dry Mediterranean climate; (c) current status of adoption and spread of CA in the dry Mediterranean climate countries; and (d) opportunities for CA in the Central and West Asia and North Africa (CWANA) region. CA, comprising minimum mechanical soil disturbance and no-tillage seeding, organic mulch cover, and crop diversification is now practised on some 125 million ha, corresponding to about 9% of the global arable cropped land. The area under CA is spread across all continents and many agro-ecologies, including the dry Mediterranean climate. Empirical and scientific evidence is presented to show that significant productivity, economic, social and environmental benefits exist that can be harnessed through the adoption of CA in the dry Mediterranean climates, including those in the CWANA region. The benefits include: higher productivity and income; climate change adaptation and reduced vulnerability to the erratic rainfall distribution; and reduced greenhouse gas emissions. CA is now spread across several Mediterranean climate countries outside the Mediterranean basin particularly in South America, South Africa and Australia. In the CWANA region, CA is perceived to be a powerful tool of sustainable land management but it has not yet taken off in a serious manner except in Kazakhstan. Research on CA in the CWANA region has shown that there are opportunities for CA adoption in rainfed and irrigated farming systems involving arable and perennial crops as well as livestock.
Field Crops Research arrow_drop_down Repositório Científico da Universidade de ÉvoraPart of book or chapter of book . 2012Data sources: Repositório Científico da Universidade de Évoraadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2012.02.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 211 citations 211 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Field Crops Research arrow_drop_down Repositório Científico da Universidade de ÉvoraPart of book or chapter of book . 2012Data sources: Repositório Científico da Universidade de Évoraadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2012.02.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu