- home
- Search
- Energy Research
- 3. Good health
- GB
- Energy Policy
- Energy Research
- 3. Good health
- GB
- Energy Policy
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Luca Tasciotti; Luca Tasciotti;Sub-Saharan countries are facing a number of similar challenges, including their need to increase electricity access for both urban and rural dwellers and to limit the cases of malaria related morbidity and mortality. This study explores the link between using electricity, for either lighting or cooking purposes, and the occurrence of malaria cases using country-representative household level data for Malawi. The descriptive statistics and the econometric results highlight the fact that those household members living in ‘electrified’ households are more likely to experience malaria. The interpretations behind those results can be diverse; as evidence suggests, malaria vectors are attracted by electric lights and outdoor lighting available after the sunset may change people habits and increases their exposure to those vectors. This study aims at raising the attention to a nexus which has very rarely been studied theoretically and even less empirically, despite the fact that electricity projects are now in the agenda of several Sub-Saharan countries and that malaria still continue to constitute a major threat for an incredible high number of people, most of all children and pregnant women.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Aner Martinez-Soto; Constanza C. Avendaño Vera; Alex Boso; Alvaro Hofflinger; Matthew Shupler;The effect of COVID-19 lockdowns on ambient air pollution levels in urban south-central Chile, where outdoor air pollution primarily originates indoors from wood burning for heating, may differ from trends in cities where transportation and industrial emission sources dominate. This quasi-experimental study compared hourly fine (PM2.5) and coarse (PM10) particulate matter measurements from six air monitors (three beta attenuation monitors; three low-cost sensors) in commercial and low/middle-income residential areas of Temuco, Chile between 2019 and 2020. The potential impact of varying annual meterological conditions on air quality was also assessed. During COVID-19 lockdown, average monthly ambient PM2.5 concentrations in a commercial and middle-income residential neighborhood of Temuco were up to 50% higher (from 12 to 18 μg/m3) and 59% higher (from 22 to 35 μg/m3) than 2019 levels, respectively. Conversely, PM2.5 levels decreased by up to 52% (from 43 to 21 μg/m3) in low-income areas. The fine fraction of PM10 in April 2020 was 48% higher than in April 2017-2019 (from 50% to 74%) in a commercial area. These changes did not appear to result from meterological differences between years. During COVID-19 lockdown, higher outdoor PM2.5 pollution from wood heating existed in more affluent areas of Temuco, while PM2.5 concentrations declined among poorer households refraining from wood heating. To reduce air pollution and energy poverty in south-central Chile, affordability of clean heating fuels (e.g. electricity) should be a policy priority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Authors: Tom M. Crowards; David Pearce;Using epidemiological meta studies for the health impacts of small particulate matter — PM10 — it is possible to predict the number of premature deaths and some morbidity impacts in the UK from prevailing ambient concentrations. The analysis suggests that as many as 12 000 deaths might be attributed to total concentrations, or perhaps 7000 deaths if only ‘anthropogenic’ PM10 is included. The nature of these premature deaths is unclear. They are almost certainly among the older population so that foreshortened lives may be measured in days, months or years. Morbidity effects can similarly be estimated, the main ones of policy concern being chronic bronchitis and ‘restricted activity days’. Unit economic values are applied to these health impacts in order to ‘collapse’ different impacts into a common unit. The end result is a premature mortality cost of about £11.1 billion (urban plus rural exposure) and a further £6.3 billion for urban morbidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(96)00048-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(96)00048-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Mario Liebensteiner; Adhurim Haxhimusa;The coronavirus pandemic (COVID-19) has led to a massive collapse in economic activity and energy demand, with the result of significant emissions reductions at a global scale. However, the existing literature investigating abatement from COVID-19 mainly overlooked the overwhelming emissions reduction in Europe's power sector. We address this by assessing the intricate relationship between electricity demand shocks and heterogeneous generation technologies in the power sectors of 16 major European economies during January to March 2020. We apply an econometric model in an instrumental-variables framework. In a first step, we assess the impact of COVID-19 infections on electricity demand, and in a second step how this translates into emissions abatement. We find that, during full lockdown, COVID-19 reduced electricity demand by 19% and carbon emissions by an astonishing 34% per hour, whereas there is severe country heterogeneity depending on the electricity supply structure and demand shock intensity. From our estimates, we predict that power sector emissions fell by 18.4% in 2020. Our results reveal the importance of a carbon price, so that a demand reduction can offset large amounts of emissions by displacing coal at the margin. We derive several policy implications from our analysis to draw lessons from the pandemic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Michael Grimsley; Jan Gilbertson; Geoff Green;Over the past decade the Warm Front Scheme has been the English Government's principal programme for improving domestic energy efficiency and reducing fuel poverty. This paper reports on a cross-sectional survey of low income householders participating in the Warm Front Scheme in five urban areas of England. Surveys were conducted of 2685 individuals, before and or after intervention. Pathways to self reported health were modelled by logistic regression. Of all the dimensions of health examined, only self reported mental health is directly associated with Warm Front measures. Intermediary variables associated with Warm Front intervention were shown to be significantly correlated with more dimensions of self reported health status. Higher temperatures, satisfaction with the heating system, greater thermal comfort, reductions in fuel poverty and lower stress were significantly correlated with improved health. Alleviating fuel poverty and reducing stress appeared to be the main route to health. We conclude there are complex and indirect relationships linking energy efficiency measures to outcomes on all dimensions of health which contribute to significant material and psychosocial benefits. The impact of the Warm Front Scheme cannot be fully understood by a limited analysis which merely relates indoor temperature and property characteristics to physiological health outcomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Michael Webber; Jon Barnett; Suraje Dessai; Suraje Dessai;A range of energy-economy models forecast losses to members of the Organisation of Petroleum Exporting Countries (OPEC) should the Kyoto Protocol come into force. These forecasts are a powerful influence in the United Nations Framework Convention on Climate Change negotiations. They are used by OPEC to advance the agenda on the impacts of response measures, covertly arguing for compensation for lost oil revenues arising from implementation of the Protocol. This paper discusses this issue, and explores the key assumptions of these models and their uncertainties. Assumptions about carbon leakage, future availability of oil reserves, substitution, innovation, and capital turnover are considered. The paper suggests that losses will not affect OPEC countries equally, and that these losses are not likely to be as substantial as the models forecast. A range of policy measures are proposed to lessen any impact the Protocol may have on OPEC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(03)00183-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(03)00183-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Tim Jackson; Katie Begg; Peter Bailey; Stuart Parkinson;Abstract The concept of Joint Implementation (JI) has been incorporated into the Kyoto Protocol, under both Articles 6 and 12 (the Clean Development Mechanism or CDM). However, a number of outstanding issues remain to be settled: one such issue being the ‘banking’ of credits earned from JI projects. Currently, the Protocol specifies that ‘donor’ countries funding JI projects under the CDM may receive credits from 2000 and ‘bank’ them for use in contributing to their emissions target. Since the emission targets have only been agreed for the period 2008–2012 inclusive, we argue that credited CDM action between 2000 and 2008 could be offset by uncontrolled increases elsewhere in the donor country during this time, and hence such crediting could lead to ‘relaxation’ of the donor country targets. We detail an analysis which attempts to estimate the level of such a relaxation and conclude that it is not negligible. Hence we suggest that CDM credits should be multiplied by a ‘crediting fraction’, calculated to be between 40% and 70%, to compensate. We then discuss this in respect of the ongoing climate change negotiations, particularly considering the possibility of this sort of banking being introduced for JI projects under Article 6.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(99)00015-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(99)00015-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Ole Pahl; Joe Murray; Stas Burek;Abstract The National Health Service in Scotland (NHSScotland) has, in recent years, done much to reduce energy consumption in its major healthcare buildings (hospitals). On average, a reduction of 2% per year has been achieved since 2000, based on hospital buildings. However, there had been little or no attention paid to smaller premises such as health centres, clinics, dentists, etc. Such smaller healthcare buildings in Scotland constitute 29% of the total treated floor area of all NHSScotland buildings and, therefore, may contribute a similar percentage of carbon and other emissions to the environment. By concentrating on a sample of local health centres in Scotland, this paper outlines the creation of an energy benchmark target, which is part of a wider research project to investigate the environmental impacts of small healthcare buildings in Scotland and the scope for improvements. It was found that energy consumption varied widely between different centres but this variation could not be linked to building style, floor area or volume. Overall, it was found that a benchmark of 0.2 GJ/m 3 would be challenging, but realistic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2007.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2007.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Christopher R. Jones; Jan Gilbertson; Thomas L. Webb; Christopher D. Maidment; E. Abigail Hathway;Abstract It is widely accepted that interventions designed to promote household energy efficiency, like insulation, central heating and double glazing, can help to reduce cold-related illnesses and associated stress by making it easier for residents to keep their homes warm. However, these interventions may also have a detrimental effect on health. For example, the materials used or lower ventilation rates could result in poorer indoor air quality. The present research sought to systematically quantify the impact of household energy efficiency measures on health and wellbeing. Thirty-six studies, involving more than 33,000 participants were meta-analysed. Effect sizes (d) ranged from −0.43 (a negative impact on health) to 1.41 (a substantial positive impact on health), with an overall sample-weighted average effect size (d+) of 0.08. On average, therefore, household energy efficiency interventions led to a small but significant improvement in the health of residents. The findings are discussed in the context of the health improvements experienced by different groups of participants and the study design factors that influence health outcomes. The need for future studies to investigate the long term health benefits of interventions designed to promote household energy efficiency is identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Sukumar Natarajan; Caroline Hughes; Manuel Herrera; Chunde Liu; Woong June Chung;Abstract There is said to be a strong relationship between low winter fuel consumption and increased cold-related morbidities and mortalities in the elderly. However, no study has so far investigated baseline domestic thermal conditions, energy and health in this demographic - a crucial gap given an ageing population. Hence we examine, for the first time, the validity of current thermal comfort standards and World Health Organisation minimum temperature thresholds in the 65 + demographic, through a longitudinal study of thermal conditions in homes of the elderly. We cover two typical winters using repeated monthly surveys and continuous temperature monitoring in living and bed rooms. Results demonstrate that the widely used ISO7730 model significantly underpredicts comfort in this demographic. We use our data to create a new model for the elderly, with a 40% lower error rate. Using calibrated computer models, we demonstrate that our model predicts a 44% reduction in winter heating demand, compared to the current model. Finally, our data provides little evidence for an association between low indoor temperature and healthcare visits for a variety of morbidities. These results question current assumptions around thermal comfort and health in the elderly, with potential implications for health and energy policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.110954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.110954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Luca Tasciotti; Luca Tasciotti;Sub-Saharan countries are facing a number of similar challenges, including their need to increase electricity access for both urban and rural dwellers and to limit the cases of malaria related morbidity and mortality. This study explores the link between using electricity, for either lighting or cooking purposes, and the occurrence of malaria cases using country-representative household level data for Malawi. The descriptive statistics and the econometric results highlight the fact that those household members living in ‘electrified’ households are more likely to experience malaria. The interpretations behind those results can be diverse; as evidence suggests, malaria vectors are attracted by electric lights and outdoor lighting available after the sunset may change people habits and increases their exposure to those vectors. This study aims at raising the attention to a nexus which has very rarely been studied theoretically and even less empirically, despite the fact that electricity projects are now in the agenda of several Sub-Saharan countries and that malaria still continue to constitute a major threat for an incredible high number of people, most of all children and pregnant women.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Aner Martinez-Soto; Constanza C. Avendaño Vera; Alex Boso; Alvaro Hofflinger; Matthew Shupler;The effect of COVID-19 lockdowns on ambient air pollution levels in urban south-central Chile, where outdoor air pollution primarily originates indoors from wood burning for heating, may differ from trends in cities where transportation and industrial emission sources dominate. This quasi-experimental study compared hourly fine (PM2.5) and coarse (PM10) particulate matter measurements from six air monitors (three beta attenuation monitors; three low-cost sensors) in commercial and low/middle-income residential areas of Temuco, Chile between 2019 and 2020. The potential impact of varying annual meterological conditions on air quality was also assessed. During COVID-19 lockdown, average monthly ambient PM2.5 concentrations in a commercial and middle-income residential neighborhood of Temuco were up to 50% higher (from 12 to 18 μg/m3) and 59% higher (from 22 to 35 μg/m3) than 2019 levels, respectively. Conversely, PM2.5 levels decreased by up to 52% (from 43 to 21 μg/m3) in low-income areas. The fine fraction of PM10 in April 2020 was 48% higher than in April 2017-2019 (from 50% to 74%) in a commercial area. These changes did not appear to result from meterological differences between years. During COVID-19 lockdown, higher outdoor PM2.5 pollution from wood heating existed in more affluent areas of Temuco, while PM2.5 concentrations declined among poorer households refraining from wood heating. To reduce air pollution and energy poverty in south-central Chile, affordability of clean heating fuels (e.g. electricity) should be a policy priority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Authors: Tom M. Crowards; David Pearce;Using epidemiological meta studies for the health impacts of small particulate matter — PM10 — it is possible to predict the number of premature deaths and some morbidity impacts in the UK from prevailing ambient concentrations. The analysis suggests that as many as 12 000 deaths might be attributed to total concentrations, or perhaps 7000 deaths if only ‘anthropogenic’ PM10 is included. The nature of these premature deaths is unclear. They are almost certainly among the older population so that foreshortened lives may be measured in days, months or years. Morbidity effects can similarly be estimated, the main ones of policy concern being chronic bronchitis and ‘restricted activity days’. Unit economic values are applied to these health impacts in order to ‘collapse’ different impacts into a common unit. The end result is a premature mortality cost of about £11.1 billion (urban plus rural exposure) and a further £6.3 billion for urban morbidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(96)00048-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(96)00048-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Mario Liebensteiner; Adhurim Haxhimusa;The coronavirus pandemic (COVID-19) has led to a massive collapse in economic activity and energy demand, with the result of significant emissions reductions at a global scale. However, the existing literature investigating abatement from COVID-19 mainly overlooked the overwhelming emissions reduction in Europe's power sector. We address this by assessing the intricate relationship between electricity demand shocks and heterogeneous generation technologies in the power sectors of 16 major European economies during January to March 2020. We apply an econometric model in an instrumental-variables framework. In a first step, we assess the impact of COVID-19 infections on electricity demand, and in a second step how this translates into emissions abatement. We find that, during full lockdown, COVID-19 reduced electricity demand by 19% and carbon emissions by an astonishing 34% per hour, whereas there is severe country heterogeneity depending on the electricity supply structure and demand shock intensity. From our estimates, we predict that power sector emissions fell by 18.4% in 2020. Our results reveal the importance of a carbon price, so that a demand reduction can offset large amounts of emissions by displacing coal at the margin. We derive several policy implications from our analysis to draw lessons from the pandemic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Michael Grimsley; Jan Gilbertson; Geoff Green;Over the past decade the Warm Front Scheme has been the English Government's principal programme for improving domestic energy efficiency and reducing fuel poverty. This paper reports on a cross-sectional survey of low income householders participating in the Warm Front Scheme in five urban areas of England. Surveys were conducted of 2685 individuals, before and or after intervention. Pathways to self reported health were modelled by logistic regression. Of all the dimensions of health examined, only self reported mental health is directly associated with Warm Front measures. Intermediary variables associated with Warm Front intervention were shown to be significantly correlated with more dimensions of self reported health status. Higher temperatures, satisfaction with the heating system, greater thermal comfort, reductions in fuel poverty and lower stress were significantly correlated with improved health. Alleviating fuel poverty and reducing stress appeared to be the main route to health. We conclude there are complex and indirect relationships linking energy efficiency measures to outcomes on all dimensions of health which contribute to significant material and psychosocial benefits. The impact of the Warm Front Scheme cannot be fully understood by a limited analysis which merely relates indoor temperature and property characteristics to physiological health outcomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Michael Webber; Jon Barnett; Suraje Dessai; Suraje Dessai;A range of energy-economy models forecast losses to members of the Organisation of Petroleum Exporting Countries (OPEC) should the Kyoto Protocol come into force. These forecasts are a powerful influence in the United Nations Framework Convention on Climate Change negotiations. They are used by OPEC to advance the agenda on the impacts of response measures, covertly arguing for compensation for lost oil revenues arising from implementation of the Protocol. This paper discusses this issue, and explores the key assumptions of these models and their uncertainties. Assumptions about carbon leakage, future availability of oil reserves, substitution, innovation, and capital turnover are considered. The paper suggests that losses will not affect OPEC countries equally, and that these losses are not likely to be as substantial as the models forecast. A range of policy measures are proposed to lessen any impact the Protocol may have on OPEC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(03)00183-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(03)00183-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Tim Jackson; Katie Begg; Peter Bailey; Stuart Parkinson;Abstract The concept of Joint Implementation (JI) has been incorporated into the Kyoto Protocol, under both Articles 6 and 12 (the Clean Development Mechanism or CDM). However, a number of outstanding issues remain to be settled: one such issue being the ‘banking’ of credits earned from JI projects. Currently, the Protocol specifies that ‘donor’ countries funding JI projects under the CDM may receive credits from 2000 and ‘bank’ them for use in contributing to their emissions target. Since the emission targets have only been agreed for the period 2008–2012 inclusive, we argue that credited CDM action between 2000 and 2008 could be offset by uncontrolled increases elsewhere in the donor country during this time, and hence such crediting could lead to ‘relaxation’ of the donor country targets. We detail an analysis which attempts to estimate the level of such a relaxation and conclude that it is not negligible. Hence we suggest that CDM credits should be multiplied by a ‘crediting fraction’, calculated to be between 40% and 70%, to compensate. We then discuss this in respect of the ongoing climate change negotiations, particularly considering the possibility of this sort of banking being introduced for JI projects under Article 6.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(99)00015-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(99)00015-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Ole Pahl; Joe Murray; Stas Burek;Abstract The National Health Service in Scotland (NHSScotland) has, in recent years, done much to reduce energy consumption in its major healthcare buildings (hospitals). On average, a reduction of 2% per year has been achieved since 2000, based on hospital buildings. However, there had been little or no attention paid to smaller premises such as health centres, clinics, dentists, etc. Such smaller healthcare buildings in Scotland constitute 29% of the total treated floor area of all NHSScotland buildings and, therefore, may contribute a similar percentage of carbon and other emissions to the environment. By concentrating on a sample of local health centres in Scotland, this paper outlines the creation of an energy benchmark target, which is part of a wider research project to investigate the environmental impacts of small healthcare buildings in Scotland and the scope for improvements. It was found that energy consumption varied widely between different centres but this variation could not be linked to building style, floor area or volume. Overall, it was found that a benchmark of 0.2 GJ/m 3 would be challenging, but realistic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2007.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2007.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Christopher R. Jones; Jan Gilbertson; Thomas L. Webb; Christopher D. Maidment; E. Abigail Hathway;Abstract It is widely accepted that interventions designed to promote household energy efficiency, like insulation, central heating and double glazing, can help to reduce cold-related illnesses and associated stress by making it easier for residents to keep their homes warm. However, these interventions may also have a detrimental effect on health. For example, the materials used or lower ventilation rates could result in poorer indoor air quality. The present research sought to systematically quantify the impact of household energy efficiency measures on health and wellbeing. Thirty-six studies, involving more than 33,000 participants were meta-analysed. Effect sizes (d) ranged from −0.43 (a negative impact on health) to 1.41 (a substantial positive impact on health), with an overall sample-weighted average effect size (d+) of 0.08. On average, therefore, household energy efficiency interventions led to a small but significant improvement in the health of residents. The findings are discussed in the context of the health improvements experienced by different groups of participants and the study design factors that influence health outcomes. The need for future studies to investigate the long term health benefits of interventions designed to promote household energy efficiency is identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Sukumar Natarajan; Caroline Hughes; Manuel Herrera; Chunde Liu; Woong June Chung;Abstract There is said to be a strong relationship between low winter fuel consumption and increased cold-related morbidities and mortalities in the elderly. However, no study has so far investigated baseline domestic thermal conditions, energy and health in this demographic - a crucial gap given an ageing population. Hence we examine, for the first time, the validity of current thermal comfort standards and World Health Organisation minimum temperature thresholds in the 65 + demographic, through a longitudinal study of thermal conditions in homes of the elderly. We cover two typical winters using repeated monthly surveys and continuous temperature monitoring in living and bed rooms. Results demonstrate that the widely used ISO7730 model significantly underpredicts comfort in this demographic. We use our data to create a new model for the elderly, with a 40% lower error rate. Using calibrated computer models, we demonstrate that our model predicts a 44% reduction in winter heating demand, compared to the current model. Finally, our data provides little evidence for an association between low indoor temperature and healthcare visits for a variety of morbidities. These results question current assumptions around thermal comfort and health in the elderly, with potential implications for health and energy policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.110954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.110954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu