- home
- Search
- Energy Research
- 7. Clean energy
- AU
- IN
- BE
- Applied Energy
- Energy Research
- 7. Clean energy
- AU
- IN
- BE
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2009 GermanyPublisher:Elsevier BV Saerens, Bart; Vandersteen, Jeroen; Persoons, T.; Swevers, Jan; Diehl, Moritz; Bulck, Eric van den;Abstract This paper discusses the minimization of the fuel consumption of a gasoline engine through dynamic optimization. The minimization uses a mean value model of the powertrain and vehicle. This model has two state variables: the pressure in the engine intake manifold and the engine speed. The control input is the throttle valve angle. The model is identified on a universal engine dynamometer. Optimal state and control trajectories are calculated using Bock’s direct multiple shooting method, implemented in the software MUSCOD-II. The developed approach is illustrated both in simulation and experimentally for a generic test case where a vehicle accelerates from 1100 rpm to 3700 rpm in 30 s . The optimized trajectories yield minimal fuel consumption. The experiments show that a linear engine speed trajectory yields an extra fuel consumption of 13 % when compared to the optimal trajectory. It is shown that, with a simple model, a significant amount of fuel can be saved without loss of the fun-to-drive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Edoardo Bertone; Oz Sahin; Rodney A. Stewart; Patrick X.W. Zou; Morshed Alam; Keith Hampson; Evan Blair;handle: 20.500.11937/61841 , 1959.3/440423 , 10072/379867
Abstract In Australia, the government spending on public buildings’ energy and water consumption is considerable; however the building energy and water retrofit market potential has been diminished by a number of barriers, especially financial. In contrast, in other advanced economies there are several reported financing strategies that have been shown to accelerate retrofit projects implementation. In this study, a coupled Bayesian Network – System Dynamics model was developed with the core aim to assess the likely influence of those novel financing options and procurement procedures on public building retrofit outcomes scenarios in the Australian context. A particular case-study focusing on Australian public hospitals was showcased as an example in this paper. Stakeholder engagement was utilised to estimate likely preferences and to conceptualise causal relationships of model parameters. The scenario modelling showed that a revolving loan fund supporting an energy performance contracting procurement procedure was preferred. Subsequently, the specific features of this preferred framework were optimised to yield the greatest number of viable retrofit projects over the long term. The results indicated that such a financing scheme would lead to substantial abatement of energy and water consumption, as well as carbon emissions. The strategic scenario analysis approach developed herein provides evidence-based support to policy-makers advocating novel financing and procurement models for addressing a government’s sustainability agenda in a financially responsible and net-positive manner.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/379867Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/379867Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Avinash Kumar Agarwal; Akhilendra Pratap Singh;Abstract In compression ignition engines, soot–NOx paradox is an extremely challenging unresolved issue. Homogeneous charge compression ignition (HCCI) is one of the most promising solution that combines the advantages of both SI and CI combustion modes. It gives high thermal efficiency similar to compression ignition engines and resolve the associated issues of high levels of NOx and PM simultaneously. In HCCI combustion, homogeneous mixture of air and fuel burns spontaneously throughout the combustion chamber, which reduces the total combustion duration due to very high rate of heat release. Determination of precise control parameters for controlling the ‘rate of heat release’ and ‘start of combustion’ are major research challenges in the development and deployment of this technology. In the present research, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode, while other cylinder operate in conventional CI mode. Homogeneous mixture preparation is the most challenging part for achieving diesel HCCI combustion. Low diesel volatility remains the main obstacle in preparing the homogenous fuel–air mixture therefore a dedicated device called ‘diesel vaporizer’ was developed. Exhaust gas recirculation (0%, 10% and 20%) was used for controlling the rate of heat release. To study the combustion behavior, experiments were performed at three different relative air–fuel ratios (λ = 4.95, 3.70 and 2.56). Enrichment of fuel–air mixture enhances the rate of heat release and the location of peak of in-cylinder pressure shift towards BTDC side due to earlier start of combustion. This was effectively controlled by EGR for leaner HCCI combustion conditions. Exhaust gases diluted the homogeneous charge and presence of non-reactive species reduce the rate of combustion. It controls the peak in-cylinder temperature, which is a responsible for extremely low NOx formation. For richer fuel–air mixtures, EGR was relatively less effective due to dominance of ‘rate of heat release’, which was significantly high.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.03.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.03.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Yongjun Sun; Zhenjun Ma; Haoshan Ren; Chengliang Xu;Abstract Accurate rooftop solar energy potential characterization is critically important for promoting the wide penetration of renewable energy in high-density cities. However, it has been a long-standing challenge due to the complex building shading effects and diversified rooftop availabilities. To overcome the challenge, this study proposed a novel 3D-geographic information system (GIS) and deep learning integrated approach, in which a 3D-GIS-based solar irradiance analyzer was developed to predict dynamic rooftop solar irradiance by taking shading effects of surrounding buildings into account. A deep learning framework was developed to identify the rooftop availabilities. Experimental validations have shown their high accuracies. As a case study, a real urban region of Hong Kong was used. The results showed that the annual solar energy potential of the entire building group was reduced by 35.7% due to the shading effect and the reduced rooftop availability. The reductions of individual buildings varied from 13.4% to 74.5%. In spite of the substantial reductions of the annual solar energy, the shading effect could only slightly reduce the peak solar power. In fact, the annual solar energy reduction could be five times higher than the peak solar power reduction. Further analysis showed that simple addition of the respective solar energy potential reductions, caused by the shading effect and the rooftop availability, tends to highly overestimate the total reduction by up to 26%. For this reason, their impacts cannot be considered separately but as joint effects. The integrated approach provides a viable means to accurately characterize rooftop solar energy potential in urban regions, which can help facilitate solar energy applications in high-density cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Amiya K. Jana;This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Syed Kaleemuddin; G. Amba Prasad Rao;Abstract Fossil fuel run diesel engines are being favored in light, medium and heavy duty applications as they exhibit higher fuel conversion efficiencies. Direct injection diesels are still facing challenges to obtain trade-off between oxides of nitrogen and particulate emissions. There are sophisticated strategies such as common rail direct injection, particulate filters with associated sensors and actuators but limited to expensive comfort vehicles. In the present experimental study, a mechanically operated simple component, variable timing fuel injection cam, is designed for a 510 cc automotive type naturally aspirated, water-cooled, direct injection diesel engine. Modifications in the fuel injection cam and gear train are carried out to suit the existing engine configuration. Variable speed tests are carried out for testing the efficacy of component on both engine and chassis dynamometers for performance and emissions. It is observed that the engine which is already retarded could further be retarded with variable timing fuel injection cam. Significant reductions in NO x and smoke emission levels are achieved. Combined effect of VIC with 7% EGR could reduce CO by about 88%, HC + NO x by 37% and PM emissions by 90%. The Engine incorporated with the designed component and EGR, successfully satisfied the existing emission norms with improved power and specific fuel consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1983Publisher:Elsevier BV Authors: V.K. Goel; B.C. Raychaudhuri; Ram Chandra;Abstract The curves have been predicted for horizontal, as well as tilted collectors and for different gap spacings. These curves can easily be used for evaluating the effects of design changes in solar flat-plate collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90003-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90003-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Gowtham Mohan; Gowtham Mohan; Andrew Martin; N.T. Uday Kumar; N.T. Uday Kumar;Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Michael J. Brear; Chris Manzie; Will Challis Clarke;Abstract This article experimentally demonstrates a novel, microgrid control algorithm based on a two-layer economic model predictive control framework that was previously developed by the authors. This algorithm is applied to an isolated microgrid with a solar photovoltaic system, a battery bank and a gasoline-fuelled generator. The control system performance is experimentally compared to a baseline algorithm over 5 min and 10 h periods, while an experimentally validated model is used to compare performance over a full year. The results indicate that applying the proposed, two-layer economic model predictive control algorithm can reduce operating costs and CO 2 emissions by 5%–10% relative to conventional, rule based methods, and by 10%–15% if improved solar and demand forecasts are available. Furthermore, the proposed two-level algorithm can achieve reductions of up to 5% compared with current state-of-the-art methods which only attempt to optimize performance in the energy management system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 GermanyPublisher:Elsevier BV Saerens, Bart; Vandersteen, Jeroen; Persoons, T.; Swevers, Jan; Diehl, Moritz; Bulck, Eric van den;Abstract This paper discusses the minimization of the fuel consumption of a gasoline engine through dynamic optimization. The minimization uses a mean value model of the powertrain and vehicle. This model has two state variables: the pressure in the engine intake manifold and the engine speed. The control input is the throttle valve angle. The model is identified on a universal engine dynamometer. Optimal state and control trajectories are calculated using Bock’s direct multiple shooting method, implemented in the software MUSCOD-II. The developed approach is illustrated both in simulation and experimentally for a generic test case where a vehicle accelerates from 1100 rpm to 3700 rpm in 30 s . The optimized trajectories yield minimal fuel consumption. The experiments show that a linear engine speed trajectory yields an extra fuel consumption of 13 % when compared to the optimal trajectory. It is shown that, with a simple model, a significant amount of fuel can be saved without loss of the fun-to-drive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Edoardo Bertone; Oz Sahin; Rodney A. Stewart; Patrick X.W. Zou; Morshed Alam; Keith Hampson; Evan Blair;handle: 20.500.11937/61841 , 1959.3/440423 , 10072/379867
Abstract In Australia, the government spending on public buildings’ energy and water consumption is considerable; however the building energy and water retrofit market potential has been diminished by a number of barriers, especially financial. In contrast, in other advanced economies there are several reported financing strategies that have been shown to accelerate retrofit projects implementation. In this study, a coupled Bayesian Network – System Dynamics model was developed with the core aim to assess the likely influence of those novel financing options and procurement procedures on public building retrofit outcomes scenarios in the Australian context. A particular case-study focusing on Australian public hospitals was showcased as an example in this paper. Stakeholder engagement was utilised to estimate likely preferences and to conceptualise causal relationships of model parameters. The scenario modelling showed that a revolving loan fund supporting an energy performance contracting procurement procedure was preferred. Subsequently, the specific features of this preferred framework were optimised to yield the greatest number of viable retrofit projects over the long term. The results indicated that such a financing scheme would lead to substantial abatement of energy and water consumption, as well as carbon emissions. The strategic scenario analysis approach developed herein provides evidence-based support to policy-makers advocating novel financing and procurement models for addressing a government’s sustainability agenda in a financially responsible and net-positive manner.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/379867Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/379867Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Avinash Kumar Agarwal; Akhilendra Pratap Singh;Abstract In compression ignition engines, soot–NOx paradox is an extremely challenging unresolved issue. Homogeneous charge compression ignition (HCCI) is one of the most promising solution that combines the advantages of both SI and CI combustion modes. It gives high thermal efficiency similar to compression ignition engines and resolve the associated issues of high levels of NOx and PM simultaneously. In HCCI combustion, homogeneous mixture of air and fuel burns spontaneously throughout the combustion chamber, which reduces the total combustion duration due to very high rate of heat release. Determination of precise control parameters for controlling the ‘rate of heat release’ and ‘start of combustion’ are major research challenges in the development and deployment of this technology. In the present research, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode, while other cylinder operate in conventional CI mode. Homogeneous mixture preparation is the most challenging part for achieving diesel HCCI combustion. Low diesel volatility remains the main obstacle in preparing the homogenous fuel–air mixture therefore a dedicated device called ‘diesel vaporizer’ was developed. Exhaust gas recirculation (0%, 10% and 20%) was used for controlling the rate of heat release. To study the combustion behavior, experiments were performed at three different relative air–fuel ratios (λ = 4.95, 3.70 and 2.56). Enrichment of fuel–air mixture enhances the rate of heat release and the location of peak of in-cylinder pressure shift towards BTDC side due to earlier start of combustion. This was effectively controlled by EGR for leaner HCCI combustion conditions. Exhaust gases diluted the homogeneous charge and presence of non-reactive species reduce the rate of combustion. It controls the peak in-cylinder temperature, which is a responsible for extremely low NOx formation. For richer fuel–air mixtures, EGR was relatively less effective due to dominance of ‘rate of heat release’, which was significantly high.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.03.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.03.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Yongjun Sun; Zhenjun Ma; Haoshan Ren; Chengliang Xu;Abstract Accurate rooftop solar energy potential characterization is critically important for promoting the wide penetration of renewable energy in high-density cities. However, it has been a long-standing challenge due to the complex building shading effects and diversified rooftop availabilities. To overcome the challenge, this study proposed a novel 3D-geographic information system (GIS) and deep learning integrated approach, in which a 3D-GIS-based solar irradiance analyzer was developed to predict dynamic rooftop solar irradiance by taking shading effects of surrounding buildings into account. A deep learning framework was developed to identify the rooftop availabilities. Experimental validations have shown their high accuracies. As a case study, a real urban region of Hong Kong was used. The results showed that the annual solar energy potential of the entire building group was reduced by 35.7% due to the shading effect and the reduced rooftop availability. The reductions of individual buildings varied from 13.4% to 74.5%. In spite of the substantial reductions of the annual solar energy, the shading effect could only slightly reduce the peak solar power. In fact, the annual solar energy reduction could be five times higher than the peak solar power reduction. Further analysis showed that simple addition of the respective solar energy potential reductions, caused by the shading effect and the rooftop availability, tends to highly overestimate the total reduction by up to 26%. For this reason, their impacts cannot be considered separately but as joint effects. The integrated approach provides a viable means to accurately characterize rooftop solar energy potential in urban regions, which can help facilitate solar energy applications in high-density cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Amiya K. Jana;This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Syed Kaleemuddin; G. Amba Prasad Rao;Abstract Fossil fuel run diesel engines are being favored in light, medium and heavy duty applications as they exhibit higher fuel conversion efficiencies. Direct injection diesels are still facing challenges to obtain trade-off between oxides of nitrogen and particulate emissions. There are sophisticated strategies such as common rail direct injection, particulate filters with associated sensors and actuators but limited to expensive comfort vehicles. In the present experimental study, a mechanically operated simple component, variable timing fuel injection cam, is designed for a 510 cc automotive type naturally aspirated, water-cooled, direct injection diesel engine. Modifications in the fuel injection cam and gear train are carried out to suit the existing engine configuration. Variable speed tests are carried out for testing the efficacy of component on both engine and chassis dynamometers for performance and emissions. It is observed that the engine which is already retarded could further be retarded with variable timing fuel injection cam. Significant reductions in NO x and smoke emission levels are achieved. Combined effect of VIC with 7% EGR could reduce CO by about 88%, HC + NO x by 37% and PM emissions by 90%. The Engine incorporated with the designed component and EGR, successfully satisfied the existing emission norms with improved power and specific fuel consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1983Publisher:Elsevier BV Authors: V.K. Goel; B.C. Raychaudhuri; Ram Chandra;Abstract The curves have been predicted for horizontal, as well as tilted collectors and for different gap spacings. These curves can easily be used for evaluating the effects of design changes in solar flat-plate collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90003-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90003-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Gowtham Mohan; Gowtham Mohan; Andrew Martin; N.T. Uday Kumar; N.T. Uday Kumar;Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Michael J. Brear; Chris Manzie; Will Challis Clarke;Abstract This article experimentally demonstrates a novel, microgrid control algorithm based on a two-layer economic model predictive control framework that was previously developed by the authors. This algorithm is applied to an isolated microgrid with a solar photovoltaic system, a battery bank and a gasoline-fuelled generator. The control system performance is experimentally compared to a baseline algorithm over 5 min and 10 h periods, while an experimentally validated model is used to compare performance over a full year. The results indicate that applying the proposed, two-layer economic model predictive control algorithm can reduce operating costs and CO 2 emissions by 5%–10% relative to conventional, rule based methods, and by 10%–15% if improved solar and demand forecasts are available. Furthermore, the proposed two-level algorithm can achieve reductions of up to 5% compared with current state-of-the-art methods which only attempt to optimize performance in the energy management system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu